Volume 3, Issue 2 (June 2017)                   Curr Med Mycol 2017, 3(2): 7-12 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Monajemzadeh A, Ahmadi S, Aslani S, Sadeghi-Nejad B. In vitro antimicrobial effect of different root canal sealers against oral pathogens . Curr Med Mycol. 2017; 3 (2) :7-12
URL: http://cmm.mazums.ac.ir/article-1-143-en.html
Abstract:   (916 Views)

Background and Purpose: Root canal therapy is the primary method for the treatment of an infected pulp in modern dentistry. The main aim of endodontic treatment is the elimination of bacteria and their products from infected root canals. In this study, we attempted to investigate the antimicrobial activity of three root canal sealers against oral pathogens.

Materials and Methods: The antimicrobial effectiveness of three endodontic sealers with different chemical compositions, namely resin (AH 26), zinc oxide eugenol (ZOE), and mineral trioxide aggregate (MTA), against Candida albicans, Streptococcus sanguis, Streptococcus salivarius, Streptococcus mutans, and Lactobacillus casei was assayed by agar well diffusion method (AWDM). The tested sealers were prepared according to the manufacturer’s instructions and poured in the prepared wells of agar plates; diluted inocula (105 and 106 CFU/ml) of the tested microorganism strains were also used. The minimum inhibitory concentration (MIC) values of the selected canal sealers ranged between 3.12 and 50 mg.ml-1 against the employed microorganism strains. All the plates were incubated at 37°C under anaerobic condition for bacteria and at 30°C for C. albicans. After three days, the inhibition zones were measured. 

Results: In this investigation, AH 26 exhibited strong activity against C. albicans with the minimum inhibitory concentration of 12.5 mg.ml-1, but ZOE and MTA did not act against C. albicans. ZOE sealer had the highest antimicrobial activity against the tested bacteria, while MTA showed the lowest antimicrobial activity. 

Conclusion: The ascending sequence of microbial growth inhibition zones was as follows AH 26 > ZOE > MTA.  
 

Full-Text [PDF 691 kb]   (432 Downloads)    
Type of Study: Original Articles | Subject: Anti Microbial Research
Received: 2017/07/12 | Accepted: 2017/09/25 | Published: 2018/01/2

References
1. Bergenholtz G. Micro-organisms from necrotic pulp of traumatized teeth. Odontol Revy. 1974; 25(4):347-58.
2. Grossman LL, Oliet S, Del Rio CE. Endodontic practice. 11th ed. India: Varghese Publishing House; 1991. P. 234-41.
3. Ercan E, Dalli M, Yavuz I Özekinci T. Investigation of Microorganisms in Infected Dental Root Canals. Biotechnol & Biotechnol Eq· 2014; 20(2): 166-172. [DOI:10.1080/13102818.2006.10817361]
4. Stuart H, Schwartz SA, Beeson TJ, Owatz CB. Enterococcus faecalis: its role in root canal treatment failure and current concepts in retreatment. J Endod. 2006; 32(2):93-8. [DOI:10.1016/j.joen.2005.10.049]
5. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013; 4(2):119-28. [DOI:10.4161/viru.22913]
6. Love RM, McMillan MD, Jenkinson HF. Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infect Immuno. 1997; 65(12):5157-64.
7. Arora R, Rawat P, Bhayya DP. A comparative evaluation of antimicrobial efficacy of three endodontic sealers: Endoflas FS, AH Plus and sealapex against Enterococcus faecalis-an in vitro study. J Dent Med Sci. 2014; 13(3):90-3.
8. Ustun Y, Sagsen B, Durmaz S, Percin D. In vitro antimicrobial efficiency of different root canal sealers against Enterecoccus faecalis. Eur J Gen Dent. 2013; 2(2):134-8. [DOI:10.4103/2278-9626.112311]
9. Shantiaee Y, Dianat O, Janani A, Kolahi Ahari G. In Vitro evaluation of antimicrobial activity of three root-canal sealers. Iran Endod J. 2010; 5(1):1-5.
10. Lovato KF, Sedgley CM. Antibacterial activity of endosequence root repair material and proroot MTA against clinical isolates of Enterococcus faecalis. J Endod. 2011; 37(11):1542-6. [DOI:10.1016/j.joen.2011.06.022]
11. Yasuda Y, Kamaguchi A, Saito T. In vitro evaluation of the antimicrobial activity of a new resin‑based endodontic sealer against endodontic pathogens. J Oral Sci. 2008; 50(3):309‑13. [DOI:10.2334/josnusd.50.309]
12. Zhang H, Shen Y, Ruse ND, Haapasalo M. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. J Endod. 2009; 35(7):1051-5. [DOI:10.1016/j.joen.2009.04.022]
13. Slutzky-Goldberg I, Slutzky H, Solomonov M, Moshonov J, Weiss EI, Matalon S. Antibacterial properties of four endodontic sealers. J Endod. 2008; 34(6):735-8. [DOI:10.1016/j.joen.2008.03.012]
14. Bodrumlu E, Semiz M. Antibacterial activity of a new endodontic sealer against Enterococcus faecalis. J Can Dent Assoc. 2006; 72(7):637.
15. Sipert CR, Hussne RP, Nishiyama CK, Torres SA. In vitro antimicrobial activity of Fill Canal, Sealapex, Mineral Trioxide Aggregate (MTA), Portland cement and endorez. Int Endod J. 2005; 38(8):539-43. [DOI:10.1111/j.1365-2591.2005.00984.x]
16. Cobankara FK, Altinoz HC, Ergani O, Kav K, Belli S. In vitro antibacterial activities of root-canal sealers by using two different methods. J Endod. 2004; 30(1):57-60. [DOI:10.1097/00004770-200401000-00013]
17. Torabinejad M, Watson TF, Pitt Ford TR. Sealing ability of a mineral trioxide aggregate when used as a root end filling material. J Endod. 1993; 19(12):591-5. [DOI:10.1016/S0099-2399(06)80271-2]
18. Torabinejad M, Hong CU, McDonald F, Pitt Ford TR. Physical and chemical properties of a new root-end filling material. J Endod. 1995; 21(7):349-53. [DOI:10.1016/S0099-2399(06)80967-2]
19. Stowe TJ, Sedgley CM, Stowe B, Fenno JC. The effects of chlorhexidine gluconate (0.12%) on the antimicrobial properties of tooth-colored ProRoot mineral trioxide aggregate. J Endod. 2004; 30(6):429-31. [DOI:10.1097/00004770-200406000-00013]
20. Venitia MC, Miles RJ, Price RG, Midgley G, Khamr W, Richardson AC. New Chromogenic Agar Medium for the Identification of Candida spp. Appl. Environ. Microbiol. 2002; 68 (7): 3622-3627. [DOI:10.1128/AEM.68.7.3622-3627.2002]
21. Sadeghi-Nejad B, Rafiei A, Moosanejad F. Prevalence of Candida species in the oral cavity of patients with periodontitis. Afr J Biotechnol. 2011; 10(15):2987-90. [DOI:10.5897/AJB10.775]
22. Shialy Z, Zarrin M, Sadeghi Nejad B, Yusef Naanaie S. In vitro antifungal properties of Pistacia atlantica and olive extracts on different fungal species. Curr Med Mycol. 2015; 1(4):40-5. [DOI:10.18869/acadpub.cmm.1.4.40]
23. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard (M27-A3). 3rd ed. Wayne: Clinical and Laboratory Standards Institute (CLSI), PA; 2008.
24. Falahati M, Sepahvand A, Mahmoudvand H, Baharvand P, Jabbarnia S, Ghojoghi A, et al. Evaluation of the antifungal activities of various extracts from Pistacia atlantica Desf. Curr Med Mycol. 2015; 1(3):25-32. [DOI:10.18869/acadpub.cmm.1.3.25]
25. Siqueira JF Jr, Favieri A, Gahyva SM, Moraes SR, Lima KC, Lopes HP. Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod. 2000; 26(5):274-7. [DOI:10.1097/00004770-200005000-00005]
26. Smadi L, Mahafzah A, Khraisat A. An in vitro evaluation of antimicrobial activity of nine root canal sealers. J Contemp Dent Pract. 2008; 9(5):60-7.
27. Mohammadi Z, Yazdizadeh M. Evaluation of the antibacterial activity of new root canal sealers. J Clin Dent. 2007; 18(3):70-2.
28. Tabrizizadeh M, Mohammadi Z. In vitro evaluation of antibacterial activities of root canal sealers. J Clin Dent. 2005; 16(4):114-6.
29. Al-Khatib ZZ, Baum RH, Morse DR, Yesilsoy C, Bhambhani S, Furst ML. The antimicrobial effect of various endodontic sealers. Oral Surg Oral Med Oral Pathol. 1990; 70(6):784-90. [DOI:10.1016/0030-4220(90)90022-K]
30. Ehsani M, Adibi A, Moosavi E, Dehghani A, Khafri S, Adibi E. Antimicrobial activity of three different endodontic sealers on the Enterococcus faecalis and lactobacillus (in vitro). Caspian J Dent Res. 2013; 2(2):8-14.
31. Lindqvist L, Otteskog P. Eugenol: liberation from dental materials and effect on human diploid fibroblast cells. Scand J Dent Res. 1980; 88(6):552-6. [DOI:10.1111/j.1600-0722.1980.tb01266.x]
32. Grossman L. Antimicrobial effect of root canal cements. J Endod. 1980; 6(6):594-7. [DOI:10.1016/S0099-2399(80)80019-7]
33. Al-Hezaimi K, Al-Shalan TA, Naghshbandi J, Oglesby S,Simon JH, Rotstein I. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. J Endod. 2006; 32(11):1053-6. [DOI:10.1016/j.joen.2006.06.004]
34. Siqueira JF, Gonçalves RB. Antibacterial activities of root canal sealers against selected anaerobic bacteria. J Endod. 1996; 22(2):79-80. [DOI:10.1016/S0099-2399(96)80277-9]
35. Lai CC, Huang FM, Yang HW, Chan Y, Huang MS, Chou MY, et al. Antimicrobial activity of four root canal sealers against endodontic pathogens. Clin Oral Investig. 2001; 5(4):236-9. [DOI:10.1007/s00784-001-0135-2]
36. Markowitz K, Moynihan M, Liu M, Kim S. Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg Oral Med Oral Pathol. 1992; 73(6):729-37. [DOI:10.1016/0030-4220(92)90020-Q]
37. Al-Nazhan S, Al-Judai A. Evaluation of antifungal activity of mineral trioxide aggregate. J Endod. 2003; 29(12):826-7. [DOI:10.1097/00004770-200312000-00010]
38. Schwengberg S, Bohlen H, Kleinsasser N, Kehe K, Seiss M, Walther UI, et al. In vitro embryotoxicity assessment with dental restorative materials. J Dent. 2005; 33(1):49-55. [DOI:10.1016/j.jdent.2004.08.001]
39. Jebelli MA, Kalantar E, Maleki A, Izanloo H, Gharibi F, Daraei H, et al. Antimicrobial activities of the polypropylene imine dendrimer aginst bacteria isolated from rural water resources. Jundishapur J Nat Pharm Prod. 2015; 10(3):e20621.
40. Saggar V, Chandra S, Jaiswal JN, Singh M. Antimicrobial efficacy of iodoformized zinc oxide-eugenol sealer on micro organisms of root canal. J Indian Soc Pedod Prev Dent. 1996; 14(1):1-3.
41. Hume WR. Effect of eugenol on respiration and division in human pulp, mouse fibroblasts, and liver cells in vitro. J Dent Res. 1984; 63(11):1262-5. [DOI:10.1177/00220345840630110101]
42. Wright SE, Baron DA, Heffner JE. Intravenous eugenol causes hemorrhagic lung edema in rats: proposed oxidant mechanisms. J Lab Clin Med. 1995; 125(2):257-64.
43. Karabucak B, Stoopler ET. Root canal treatment on a patient with zinc oxide allergy: a case report. Int Endod J. 2007; 40(10):800-7. [DOI:10.1111/j.1365-2591.2007.01275.x]
44. Sarrami N, Pemberton MN, Thornhill MH, Theaker ED. Adverse reactions associated with the use of eugenol in dentistry. Br Dent J. 2002; 193(5):257-9. [DOI:10.1038/sj.bdj.4801539]
45. Himel VT, Mcspadden JT, Goodis HE. Instruments, materials and devices. In: Cohen S, Hargreaves KM, editors. Pathways of the pulp. 9th ed. St. Louis: CV Mosby; 2006. P. 269.
46. Mitchell PJ, Ford TP, Torabinejad M, Mcdonald F. Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials. 1999; 20(2):167-73. [DOI:10.1016/S0142-9612(98)00157-4]
47. Chng HK, Islam I, Yap AU, Tong YW, Koh ET. Properties of a new root-end filling material. J Endod. 2005; 31(9):665-8. [DOI:10.1097/01.don.0000157993.89164.be]
48. Kogan P, He J, Glickman GN, Watanabe I. The effects of various additives on setting properties of MTA. J Endod. 2006; 32(6):569-72. [DOI:10.1016/j.joen.2005.08.006]
49. Geurtsen W, Leyhausen G. Biological aspects of root canal filling materials--histocompatibility, cytotoxicity, and mutagenicity. Clin Oral Investig. 1997; 1(1):5-11. [DOI:10.1007/s007840050002]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2015 All Rights Reserved | Current Medical Mycology