Influence of ascorbic acid and α-tocopherol on the autoxidation and in vitro antifungal activity of amphotericin B

Document Type : Original Articles


1 Department of Biology, Faculty of Natural Sciences and Life Sciences and Earth and the Universe, University of Tlemcen, Algeria

2 Department of Biology, Université de Ghardaia, Ghardaia, Algeria



Background and Purpose: Amphotericin B (AmB) is the standard treatment for systemic fungal infections; however, the formation of reactive oxygen species reduces the efficacy and stability of this molecule. The present study aimed to evaluate the effect of the combination of AmB with ascorbic acid and α-tocopherol on its autoxidation and antifungal activity.
Materials and Methods: The antifungal activity against Candida albicans was evaluated by the viable cell counting method and checking their morphological changes with a scanning electron microscope. Monomer state of AmB was assessed by scanning the UV absorbance in the range of 300-450 nm and the lipid peroxidation was measured using quantification of thiobarbituric acid reactive-substances (TBARS).
Results: Based on the findings, the addition of ascorbic acid (3×102 µg/mL) and α-tocopherol (16 µg/mL) to the reaction medium of AmB increased its antifungal activity while maintaining its molecular stability. Moreover, the level of TBARS formed in the reaction medium of AmB was significantly reduced after combination with ascorbic acid and α-tocopherol.
Conclusion: Given their availability, their anti-free radical activity, and their low toxicity, the incorporation of ascorbic acid and α-tocopherol into the reaction medium of AmB seems to be a promising approach to obtain an effective antifungal formulation.


1. Hamill RJ. Amphotericin B formulations: a comparative review
of efficacy and toxicity. Drugs. 2013; 73(9):919-34.
2. Torrado JJ, Espada R, Ballesteros MP, Torrado-Santiago S.
Amphotericin B formulations and drug targeting. J Pharm Sci.
2008; 97(7):2405-25.
3. Liu M, Chen M, Yang Z. Design of amphotericin B oral
formulation for antifungal therapy. Drug Deliv. 2017; 24(1):1-9.
4. An M, Shen H, Cao Y, Zhang J, Cai Y, Wang R, et al. Allicin
enhances the oxidative damage effect of amphotericin B against
Candida albicans. Int J Antimicrob Agents. 2009; 33(3):258-63.
5. Espada R, Valdespina S, Molero G, Dea MA, Ballesteros MP,
Torrado JJ. Efficacy of alternative dosing regimens of polyaggregated amphotericin B. Int J Antimicrob Agents. 2008;
6. Khan MA, Owais M. Toxicity, stability and pharmacokinetics of
amphotericin B in immunomodulator tuftsin-bearing liposomes
in a murine model. J Antimicrob Chemother. 2006; 58(1):
7. Falci DR, da Rosa FB, Pasqualotto AC. Comparison of
nephrotoxicity associated to different lipid formulations of
amphotericin B: a real-life study. Mycoses. 2015; 58(2):104-12.
8. Mesa-Arango AC, Trevijano-Contador N, Roman E, SanchezFresneda R, Casas C, Herrero E, et al. The production of reactive
oxygen species is a universal action mechanism of Amphotericin
B against pathogenic yeasts and contributes to the fungicidal
effect of this drug. Antimicrob Agents Chemother. 2014;
9. Ferreira GF, Baltazar Lde M, Santos JR, Monteiro AS, Fraga
LA, Resende-Stoianoff MA, et al. The role of oxidative and
nitrosative bursts caused by azoles and amphotericin B against
the fungal pathogen
Cryptococcus gattii. J Antimicrob
Chemother. 2013; 68(8):1801-11.
10. Belhachemi MH, Boucherit K, Boucherit-Otmani Z, Belmir S,
Benbekhti Z. Effects of ascorbic acid and alpha-tocopherol on
the therapeutic index of amphotericin B. J Mycol Med. 2014;
11. Brajtburg J, Elberg S, Kobayashi GS, Medoff G. Effects of
ascorbic add on the antifungal action of amphotericin B. J
Antimicrob Chemother. 1989; 24(3):333-7.
12. Belmir S, Boucherit K, Boucherit-Otmani Z, Belhachemi MH.
Effect of aqueous extract of date palm fruit (Phoenix dactylifera
L.) on therapeutic index of amphotericin B. Phytothérapie. 2015;
13. Boucherit Z, Seksek O, Bolard J. Dormancy of
cells in the presence of the polyene antibiotic
amphotericin B: simple demonstration by flow cytometry. Med
Mycol. 2007; 45(6):525-33.
14. Subcommittee on Antifungal Susceptibility Testing (AFST) of
the ESCMID European Committee for Antimicrobial
Susceptibility Testing (EUCAST). EUCAST definitive
document EDef 7.1: method for the determination of broth
dilution MICs of antifungal agents for fermentative yeasts. Clin
Microbiol Infect. 2008; 14(4):398-405.
15. Kubo I, Himejima M. Potentiation of antifungal activity of
sesquiterpene dialdehydes against
Candida albicans and two
other fungi. Experientia. 1992; 48(11-12):1162-4.
16. Nielsen P, Müllertz A, Norling T, Kristensen H. The effect of α-
tocopherol on the in vitro solubilisation of lipophilic drugs. Int J
Pharm. 2001; 222(2):217-24.
17. Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA.
Antifungal pharmacodynamic characteristics of fluconazole and
amphotericin B tested against Candida albicans. Antimicrob
Agents Chemother. 1997; 41(6):1392-5.
18. Juliano C, Marchetti M, Campagna P, Usai M. Antimicrobial
activity and chemical composition of essential oil from
Helichrysum microphyllum Cambess. subsp. tyrrhenicum
Bacch., Brullo & Giusso collected in South-West Sardinia. Saudi
J Biol Sci. 2019; 26(5):897-905.
19. Benmansour W, Boucherit-Otmani Z, Boucherit K. Dormancy
Candida albicans ATCC10231 in the presence of
amphotericin B. Investigation using the scanning electron
microscope (SEM). J Mycol Med. 2014; 24(3):e93-100.
20. Sangetha S, Zuraini Z, Suryani S, Sasidharan S. In situ TEM and
SEM studies on the antimicrobial activity and prevention of
Candida albicans biofilm by Cassia spectabilis extract. Micron.
2009; 40(4):439-43.
21. Alvarez C, Shin DH, Kwon GS. Reformulation of fungizone by
PEG-DSPE micelles: deaggregation and detoxification of
amphotericin B. Pharm Res. 2016; 33(9):2098-106.
22. Jung SH, Lim DH, Jung SH, Lee JE, Jeong KS, Seong H, et al.
Amphotericin B-entrapping lipid nanoparticles and their in vitro
and in vivo characteristics. Eur J Pharm Sci. 2009; 37(3-4):
23. Sakanaka S, Tachibana Y. Active oxygen scavenging activity of
egg-yolk protein hydrolysates and their effects on lipid oxidation
in beef and tuna homogenates. Food Chem. 2006; 95(2):243-9.
24. Andrews FA, Beggs WH, Sarosi GA. Influence of antioxidants
on the bioactivity of amphotericin B. Antimicrob Agents
Chemother. 1977; 11(4):615-8.
25. Atmaca S, Çiçek R. Effects of ascorbic acid on amphotericin B
and nystatine activities against
Candida albicans. Antimicrob
Infect Dis Newslett. 1996; 15(1):6-8.
26. Beggs WH. Antioxidant-stabilized amphotericin B. Diagn
Microbiol Infect Dis. 1983; 1(4):339-41.
27. Baran R, Thomas L. Combination of fluconazole and alphatocopherol in the treatment of yellow nail syndrome. J Drugs
Dermatol. 2009; 8(3):276-8.
28. Biémont E. Spectroscopie moléculaire: Structures moléculaires
et analyse spectrale. Rosny-sous-Bois, France: De Boeck
Supérieur; 2008.
29. Rouessac F, Rouessac A, Ourisson G. Analyse chimique
(méthodes et techniques instrumentales modernes). France:
Enseignement de la Chimie; 1998.
30. Thomas S, Vieira CS, Hass MA, Lopes LB. Stability, cutaneous
delivery, and antioxidant potential of a lipoic acid and alphatocopherol codrug incorporated in microemulsions. J Pharm Sci.
2014; 103(8):2530-8.
31. Gaboriau F, Chéron M, Leroy L, Bolard J. Physico-chemical
properties of the heat-induced ‘superaggregates’ of amphotericin
B. Biophys Chem. 1997; 66(1):1-12.
32. Brajtburg J, Elberg S, Schwartz D, Vertut-Croquin A,
Schlessinger D, Kobayashi G, et al. Involvement of oxidative
damage in erythrocyte lysis induced by amphotericin B.
Antimicrob Agents Chemother. 1985; 27(2):172-6.
33. Sokol-Anderson ML, Brajtburg J, Medoff G. Amphotericin Binduced oxidative damage and killing of
Candida albicans. J
Infect Dis. 1986; 154(1):76-83.
34. Eymard S, Genot C. A modified xylenol orange method to
evaluate formation of lipid hydroperoxides during storage and
processing of small pelagic fish. Eur J Lipid Sci and Technol.
2003; 105(9):497-501.
35. Kovacic P, Cooksy A. Novel, unifying mechanism for
amphotericin B and other polyenedrugs: electron affinity,
radicals, electron transfer, autoxidation, toxicity, and antifungal
action. Med Chem Commun. 2012; 3(3):274-80.