Volume 3, Issue 4 ( December 2017)                   Curr Med Mycol 2017, 3(4): 6-14 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Simhadri N, Muniappan M, Kannan I, Viswanathan S. Phytochemical analysis and docking study of compounds present in a polyherbal preparation used in the treatment of dermatophytosis. Curr Med Mycol. 2017; 3 (4) :6-14
URL: http://cmm.mazums.ac.ir/article-1-162-en.html
Abstract:   (229 Views)
Background and Purpose: Soleshine is a polyherbal preparation established in the market for the treatment of cracks and tinea pedis, which is applied externally. This preparation is composed of the extracts of indigenous plants, namely Azadirachta indica, Lawsonia alba, and Shorea robusta, mixed with castor oil and sesame oil. In the present study, an attempt was made to identify the constituents of soleshine and identify some potential drug-like molecules that can inhibit important drug targets of the dermatophytes using molecular docking method.
Materials and Methods: The active ingredients of polyherbal preparation were identified with the aid of gas chromatography-mass spectrometry (GC-MS). Two major compounds were selected based on the retention time and percentage of the area covered in the graph for docking study. The three-dimensional structures of 1,3-β-glucan synthase, chitinase, fungalysin, and lumazine synthase were derived by homology modelling using MODELLER software, version 9.0. The docking of the ligand and receptor was performed using iGEMDOCK and AutodockVina software. The physicochemical properties, lipophilicity, hydrophilicity, and drug likeness properties were obtained from the Swiss ADME online server tool.
Results: The GC-MS analysis demonstrated the presence of different phytochemical compounds in the extract of polyherbal preparation. A total of 20 compounds were identified, among which 3,7-dimethyl-2,6-octadienaland 2-pentene-2-methyl were the major compounds. Regarding 3,7-dimethyl-2,6-octadienal, the covered area and height were 40.15% and 46.17%, respectively. These values were 31.90% and 23.33% for 2- pentene-2-methyl, respectively. These two major compounds had an excellent binding affinity and obeyed the rules for the drug likeness and lead likeness.
Conclusion: As the findings indicated, the two major ingredients present in soleshine showed a good antifungal activity as they inhibited the enzymes responsible for the survival of fungal organism; furthermore, they were appropriate for the lead molecules. Keywords: Anti-fungal activity, Chitinase, Dermatophytes, Fungalysin, Lumazine synthase, Molecular docking, Soleshine, 1,3-β-Glucan synthase
Full-Text [PDF 849 kb]   (87 Downloads)    
Type of Study: Original Articles | Subject: Medical Mycology
Received: 2017/10/6 | Accepted: 2018/02/4 | Published: 2018/03/11

References
1. CSIR. Wealth of India.New Delhi, India: Publications & Information Directory; 1998. P. 164
2. Anaissie E J, Bodey GP, Rinaldi M G. Eur. J. Clin. Microbiol. Infect. Dis.1989;8(4):323-30 [DOI:10.1007/BF01963467]
3. Wey S B, Mori M, Pfaller M A, Woolson RF, Wenzel RP. Arch. Intern. Med.1988;148: 2642-5 [DOI:10.1001/archinte.1988.00380120094019]
4. Beck-Sague C, Banerjee S, Jarvis WR.nfectious diseases and mortality among US nursing home residents. Am J Public Health. 1993; 83(12):1739-42. [DOI:10.2105/AJPH.83.12.1739]
5. Austinr PR, Brine C J, Castlej E, and Zikakisj P. Chitin: New facets of research. Science 1981;212(4496):749-753. [DOI:10.1126/science.7221561]
6. Peberdy JF. Fungal cell walls-a review. Biochemistry of cell walls and membranes in fungi. Berlin, Heidelberg: Springer; 1990. P. 5-30. [DOI:10.1007/978-3-642-74215-6_2]
7. Gooday GW. Biosynthesis of the fungal wall-mechanisms and implications. J Gen Microbiol. 1977; 99(1):1-11. [DOI:10.1099/00221287-99-1-1]
8. Lemsaddek L, Chambel L, Tenreiro R. Incidence of fungalysin and subtilisin virulence genes in dermatophytes. Spain: Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology A;2010. P. 658-65.
9. Kearney EB, Goldenberg J, Lipsick J, Perl M. Flavokinase and FAD synthetase from Bacillus subtilis specific for reduced flavins. J Biol Chem. 1979; 254(19):9551-7.
10. Gerhardt S, Haase I, Steinbacher S, Kaiser JT, Cushman M, Bacher A, et al. The structural basis of riboflavin binding to Schizosaccharomyces pombe 6,7-dimethyl-8-ribityllumazine synthase. J Mol Biol. 2002; 318(5):1317-29. [DOI:10.1016/S0022-2836(02)00116-X]
11. Brahmachari G. Neem--an omnipotent plant: a retrospection. Chembiochem. 2004; 5(4):408-21. [DOI:10.1002/cbic.200300749]
12. Akhila A, Rani K. Chemistry of the neem tree (Azadirachta indica A. Juss.). Fortschr Chem Org Naturst. 1999; 78:47-149. [DOI:10.1007/978-3-7091-6394-8_2]
13. Pandreka A, Dandekar DS, Haldar S, Uttara V, Vijayshree SG, Mulani FA,et al. Triterpenoid profiling and functional characterization of the initial genes involved in isoprenoid biosynthesis in neem (Azadirachta indica). BMC Plant Biol. 2015;15(1):214. [DOI:10.1186/s12870-015-0593-3]
14. Siddiqui S, Siddiqui BS, Faizi S, Mahmood T. Tetratricyclic triterpenoids and their derivatives from Azadirachta indica. J Nat Prod. 1988; 51(1):30-43. [DOI:10.1021/np50055a003]
15. Reddy KR. Folk medicine from Chittoor District, Andhra Pradesh, India used in the treatment of jaundice. Int J Crude Drug Res. 1988; 26(3):137-40. [DOI:10.3109/13880208809053907]
16. Kawo AH, Kwa AM. Phytochemical screening and antibacterial activity of the aqueous extracts and fractions of ethanolic extracts of Lawsonia inermis leaf. Int Res J Microbiol. 2011; 2(12):510-6.
17. Oyedeji AO, Ekundayo O, Koenig WA. Essential oil composition of Lawsonia inermis L. leaves from Nigeria. J Essential Oil Res. 2005; 17(4):403-4. [DOI:10.1080/10412905.2005.9698943]
18. Misra LN, Ahmad A. Triterpenoids from Shorea robusta resin. Phytochemistry. 1997; 45(3):575-8. [DOI:10.1016/S0031-9422(97)00004-6]
19. Hota RK, Bapuji M. Triterpenoids from the resin of Shorea robusta. Phytochemistry. 1993; 32(4):466-8. [DOI:10.1016/S0031-9422(00)95019-2]
20. Hwang LS. Vegetable Oils (ed) in Bailey's Industrial Oil and Fat Products. 6thed. New Jersey: John Wiley & Sons; 2005. P. 1178.
21. Gunstone FD. The chemistry of oils and fats: sources, composition, properties and uses. 1st ed. Oxford: Blackwell Publishing; 2004. P. 8.
22. Nzikou JM, Matos L, Bouanga-Kalou G, Ndangui CB, Pambou-Tobi NP, Kimbonguila A, et al. Chemical composition on the seeds and oil of sesame (Sesamum indicum L.) grown in Congo-Brazzaville. Adv J Food Sci Technol. 2009; 1(1):6-11.
23. Khare CP. Indian medicinal plants: an illustrated dictionary. New York: Springer Science & Business Media; 2007.
24. Kang SS, Cordell GA, Soejarto DD, Fong HHS. Alkaloids and flavonoids from Ricinus communis. J Nat Prod. 1985; 48(1):155-6. [DOI:10.1021/np50037a041]
25. Kadri A, Gharsallah N, Damak M, Gdoura R.Chemical composition and in vitro antioxidant properties of essential oil of Ricinus communis L. J Med Plants Res. 2011; 5(8):1466-70.
26. Thompson MJ, Bowers WS. Lupeol and 30-norlupan-3β-ol-20-one from the coating of the castor bean (Ricinus communi .). Phytochemistry. 1968; 7(5):845-7. [DOI:10.1016/S0031-9422(00)84841-4]
27. Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010; 31(2):455-61.
28. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1-3):3-26. [DOI:10.1016/S0169-409X(00)00129-0]
29. Lipinski CA. Lead and drug like compounds: the rule of five revolution. Drug Discov Today Technol. 2004; 1(4):337-41. [DOI:10.1016/j.ddtec.2004.11.007]
30. Richardson JS. Anatomy and taxonomy of protein structures. Adv Protein Chem. 1981; 34:167-339. [DOI:10.1016/S0065-3233(08)60520-3]
31. Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963; 7(1):95-9. [DOI:10.1016/S0022-2836(63)80023-6]
32. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD. Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem. 2002; 45(12):2615-23. [DOI:10.1021/jm020017n]
33. Egan WJ, Merz KM, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem. 2000; 43(12):3867-77. [DOI:10.1021/jm000292e]
34. Ghose AK, Viswanadhan VN, Wendoloski JJ. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quant itative characterization of known drug databases. J Comb Chem. 1999; 1(1):55-68. [DOI:10.1021/cc9800071]
35. Muegge I, Heald SL, Brittelli D. Simple selection criteria for drug-like chemical matter.J Me Chem.2001; 44(12):1841-6. [DOI:10.1021/jm015507e]
36. Martin YC. A bioavailability score. J Med Chem. 2005; 48(9):3164-70. [DOI:10.1021/jm0492002]
37. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 2010; 53(7):2719-40. [DOI:10.1021/jm901137j]
38. Brenk R, Schipani A, James D, Kraso wski A, Gilbert IH, Frearson J, et al. Lessons learnt from assembling screening libraries for drug discovery for neglected diseases. Chem Med Chem. 2008; 3(3):435-4. [DOI:10.1002/cmdc.200700139]
39. Jeyam M, Arangaraj M, Ravikumar P, Shalini G. Computational analysis of phytocompounds with 1, 3 -β-D-Glucan synthase for antidermatophytic activity. J App Pharm Sci. 2014; 4(2):64-9.
40. Mahmoud DA, Hassanein NM, Youssef KA, Zeid MA. Antifungal activity of different neem leaf extracts and the nimonol against some important human pathogens. Brazil J Microbiol. 2011; 42(3):1007-16. [DOI:10.1590/S1517-83822011000300021]
41. Mannargudi TD. Antimicrobial activity of Lawsonia inermis leaf extracts against some human pathogens. Int J Curr Microbiol Appl Sci. 2013; 2(5):342-9.
42. Sámi L, Pusztahelyi T, Emri T, Varecza Z, Fekete A, Grallert Á, et al. Autolysis and aging of Penicillium chrysogenum cultures under carbon starvation: Chitinase production and antifungal effect of allosamidin. J Gen Appl Microbiol. 2001; 47(4):201-11. [DOI:10.2323/jgam.47.201]

Add your comments about this article : Your username or Email:
Write the security code in the box

Send email to the article author


© 2015 All Rights Reserved | Current Medical Mycology