Volume 3, Issue 3 (September 2017)                   Curr Med Mycol 2017, 3(3): 16-20 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Parsamehr N, Rezaie S, Khodavaisy S, Salari S, Hadizadeh S, Kord M et al . Effect of biogenic selenium nanoparticles on ERG11 and CDR1 gene expression in both fluconazole-resistant and -susceptible Candida albicans isolates . Curr Med Mycol. 2017; 3 (3) :16-20
URL: http://cmm.mazums.ac.ir/article-1-170-en.html
Abstract:   (1283 Views)
Background and Purpose: Candida albicans is the most common Candida species (spp.) isolated from fungal infections. Azole resistance in Candida species has been considerably increased in the last decades. Given the toxicity of the antimicrobial drugs, resistance to antifungal agents, and drug interactions, the identification of new antifungal agents seems essential. In this study, we assessed the antifungal effects of biogenic selenium nanoparticles on C. albicans and determined the expression of ERG11 and CDR1 genes.
Materials and Methods: Selenium nanoparticles were synthesized with Bacillus sp. MSH-1. The ultrastructure of selenium nanoparticles was evaluated with a transmission electron microscope. The antifungal susceptibility test was performed according to the modified Clinical and Laboratory Standards Institute M27-A3 standard protocol. The expression levels of the CDR1 and ERG11 genes were analyzed using the quantitative real-time polymerase chain reaction (PCR) assay.
Results: The azole-resistant C. albicans and wild type C. albicans strains were inhibited by 100 and 70 µg/mL of selenium nanoparticle concentrations, respectively. The expression of CDR1 and ERG11 genes was significantly down-regulated in these selenium nanoparticle concentrations.
Conclusion: As the findings indicated, selenium nanoparticles had an appropriate antifungal activity against fluconazole-resistant and -susceptible C. albicans strains. Accordingly, these nanoparticles reduced the expression of CDR1 and ERG11 genes associated with azole resistance. Further studies are needed to investigate the synergistic effects of selenium nanoparticles using other antifungal drugs.

Full-Text [PDF 546 kb]   (600 Downloads)    
Type of Study: Original Articles | Subject: Medical Mycology
Received: 2017/11/6 | Accepted: 2018/01/29 | Published: 2018/02/17

1. Khodavaisy S, Alialy M, Mahdavi Omran S, Habibi MR, Amri P, Monadi M, et al. The study on fungal colonization of respiratory tract in patients admitted to intensive care units of sari and babol hospitals. medical journal of mashhad university of medical sciences. 2011;54(3):177-84.
2. Sardi J, Scorzoni L, Bernardi T, Fusco-Almeida A, Giannini MM. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of medical microbiology. 2013;62(1):10-24. [DOI:10.1099/jmm.0.045054-0]
3. Fisher BT, Zaoutis TE. Treatment of invasive candidiasis in immunocompromised pediatric patients. Pediatric Drugs. 2008;10(5):281-98. [DOI:10.2165/00148581-200810050-00003]
4. Vaezi A, Fakhim H, Khodavaisy S, Alizadeh A, Nazeri M, Soleimani A, et al. Epidemiological and mycological characteristics of candidemia in Iran: A systematic review and meta-analysis. Journal de Mycologie Médicale/Journal of Medical Mycology. 2017; 27(2):146-52 [DOI:10.1016/j.mycmed.2017.02.007]
5. Alizadeh F, Khodavandi A, Zalakian S. Quantitation of ergosterol content and gene expression profile of ERG11 gene in fluconazole-resistant Candida albicans. Curr Med Mycol. 2017; 3(1):13-9. [DOI:10.29252/cmm.3.1.13]
6. Lupetti A, Danesi R, Campa M, Del Tacca M, Kelly S. Molecular basis of resistance to azole antifungals. Trends in molecular medicine. 2002;8(2):76-81. [DOI:10.1016/S1471-4914(02)02280-3]
7. Khosravi Rad K, Falahati M, Roudbary M, Farahyar S, Nami S. Overexpression of MDR-1 and CDR-2 genes in fluconazole resistance of Candida albicans isolated from patients with vulvovaginal candidiasis. Curr Med Mycol. 2016;2(4):24-9 [DOI:10.18869/acadpub.cmm.2.4.24]
8. Li QQ, Skinner J, Bennett JE. Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment. BMC molecular biology. 2012;13(1):22. [DOI:10.1186/1471-2199-13-22]
9. Clark LC, Dalkin B, Krongrad A, Combs GF Jr, Turnbull BW, Slate EH,et al. Decreased incidence of prostate cancer with selenium supplementation: results of a double-blind cancer prevention trial. Br J Urol. 1998; 81(5):730-4. [DOI:10.1046/j.1464-410x.1998.00630.x]
10. Rayman MP. Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc. 2005; 64(4):527-42 [DOI:10.1079/PNS2005467]
11. Yang J, Huang K, Qin S, Wu X, Zhao Z, Chen F. Antibacterial action of selenium-enriched probiotics against pathogenic Escherichia coli. Dig Dis Sci. 2009; 54(2):246-54 [DOI:10.1007/s10620-008-0361-4]
12. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced drug delivery reviews. 2003;55(3):329-47. [DOI:10.1016/S0169-409X(02)00228-4]
13. Ratner MA, Ratner D. Nanotechnology: A gentle introduction to the next big idea: Prentice Hall Professional; 2003.
14. Singh KP, Gupta S. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Advances. 2014;4(26):13215-30. [DOI:10.1039/C4RA01274G]
15. Aggarwal K, Jain V, Sangwan S. Comparative study of ketoconazole versus selenium sulphide shampoo in pityriasis versicolor. Indian Journal of Dermatology, Venereology, and Leprology. 2003;69(2):86-7.
16. Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR. Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase‐2 expression. Biotechnol Appl Biochem. 2010; 56(1):7-15 [DOI:10.1042/BA20100042]
17. Herzing AA, Watanabe M, Edwards JK, Conte M, Tang Z-R, Hutchings GJ, et al. Energy dispersive X-ray spectroscopy of bimetallic nanoparticles in an aberration corrected scanning transmission electron microscope. Faraday discussions. 2008;138:337-51. [DOI:10.1039/B706293C]
18. Wayne P. Clinical and laboratory standards institute: reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard; CLSI document M27-A3. CLSI. 2008; 28:6-12
19. Tran PA, Webster TJ. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int J Nanomedicine. 2011; 6:1553-8.
20. Prucek R, Tuček J, Kilianová M, Panáček A, Kvítek L, Filip J, et al. The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials. 2011;32(21):4704-13. [DOI:10.1016/j.biomaterials.2011.03.039]
21. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. industrial crops and products. 2013;45:423-9. [DOI:10.1016/j.indcrop.2012.12.019]
22. Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG. Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol. 2008;18(8):1482-4.
23. Seddighi NS, Salari S, Izadi AR. Evaluation of antifungal effect of iron-oxide nanoparticles against different Candida species. IET Nanobiotechnology. 2017;11(7):883-8. [DOI:10.1049/iet-nbt.2017.0025]
24. Yost DA, Russell JC, Yang H. Non-metal colloidal particle immunoassay. Google Patents; 1990.
25. Wang H, Zhang J, Yu H. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice. Free Radical Biology and Medicine. 2007;42(10):1524-33. [DOI:10.1016/j.freeradbiomed.2007.02.013]
26. Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A, et al. Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. JTrace Elem Med Biol. 2013; 27(3):203-7.27.
27. Shakibaie M, Shahverdi AR, Faramarzi MA, Hassanzadeh GR, Rahimi HR, Sabzevari O. Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol. 2013; 51(1):58-63.27.
28. Shakibaie M, Forootanfar H, Golkari Y, Mohammadi-Khorsand T, Shakibaie MR. Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. Journal of Trace Elements in Medicine and Biology. 2015;29:235-41. [DOI:10.1016/j.jtemb.2014.07.020]
29. Kazempour ZB, Yazdi MH, Rafii F, Shahverdi AR. Sub-inhibitory concentration of biogenic selenium nanoparticles lacks post antifungal effect for Aspergillus niger and Candida albicans and stimulates the growth of Aspergillus niger. Iranian journal of microbiology. 2013;5(1):81-5
30. Shakibaie M, Salari Mohazab N, Ayatollahi Mousavi SA. Antifungal activity of selenium nanoparticles synthesized by bacillus species Msh-1 against Aspergillus fumigatus and Candida albicans.Jundishapur J Microbiol. 2015; 8(9):e26381. [DOI:10.5812/jjm.26381]
31. Cannon RD, Lamping E, Holmes AR, Niimi K, Tanabe K, Niimi M, et al. Candida albicans drug resistance–another way to cope with stress. Microbiology. 2007;153(10):3211-7. [DOI:10.1099/mic.0.2007/010405-0]
32. Brumfield KM, Moroney JV, Moore TS, Simms TA, Donze D. Functional characterization of the Chlamydomonas reinhardtii ERG3 ortholog, a gene involved in the biosynthesis of ergosterol. PLoS One. 2010;5(1):e8659. [DOI:10.1371/journal.pone.0008659]
33. Akins RA. An update on antifungal targets and mechanisms of resistance in Candida albicans. Medical Mycology. 2005;43(4):285-318. [DOI:10.1080/13693780500138971]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2015 All Rights Reserved | Current Medical Mycology