Volume 3, Issue 3 (September 2017)                   Curr Med Mycol 2017, 3(3): 21-26 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Darabian S, Hashemi S J, Khodavaisy S, Sharifynia S, Kord M, Akbari Dana M, et al . Morphological changes and induction of antifungal resistance in Aspergillus fumigatus due to different CO2 levels. Curr Med Mycol. 2017; 3 (3) :21-26
URL: http://cmm.mazums.ac.ir/article-1-174-en.html
Abstract:   (724 Views)
Background and Purpose: Aspergillosis is one of the most common opportunistic fungal infections in immunocompromised and neutropenic patients. Aspergillus fumigatus (A. fumigatus) is the most common causative agent of this infection. Due to variable CO2 concentrations that pathogens are exposed to during the infection process and to understand the role of CO2, we examined the effects of various CO2 concentrations as one of the environmental factors on morphological changes and induction of antifungal resistance in A. fumigatus.
Materials and Methods: A. fumigatus strains were cultured and incubated under 1%, 3%, 5%, and 12% CO2 atmospheres, each time for one, two, and four weeks. The control culture was maintained for one week without CO2 atmosphere. Morphological changes were investigated and antifungal susceptibility test was performed according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. The results of different CO2 atmospheres were compared with that of the control sample.
Results: We found that 1%, 3%, 5%, and 12% CO2 atmospheres were associated with morphological colony changes. Macroscopically, the colonies were shallow dark green, smooth, crisp to powdery with reduced growth; microscopic examination revealed the absence of conidiation. The induction of antifungal resistance in the susceptible strains to itraconazole, voriconazole, and amphotericin B increased after exposure to 12% CO2 atmosphere and four weeks of incubation. The MIC values for itraconazole, voriconazole, and amphotericin B were 16 g/ml, 1 g/ml, and 16 g/ml, respectively. These values for the control group were 0.125 g/ml, 0.125 g/ml, and 2 g/ml, respectively.
Conclusion: Exposure to different CO2 atmospheres induced morphological changes in A. fumigatus, it seems to increase the MIC values, as well. In parallel, resistance to both itraconazole and voriconazole was also observed.

Full-Text [PDF 579 kb]   (228 Downloads)    
Type of Study: Original Articles | Subject: Medical Mycology
Received: 2017/12/4 | Accepted: 2018/01/17 | Published: 2018/02/17

References
1. Rocchi S, Reboux G, Millon L. Azole resistance with environmental origin: What alternatives for the future? J mycol med. 2015; 25(4):249-56. [DOI:10.1016/j.mycmed.2015.10.008]
2. Abdolrasouli A, Rhodes J, Beale MA, Hagen F, Rogers TR, Chowdhary A, et al. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. MBio. 2015; 6(3):e00536 . [DOI:10.1128/mBio.00536-15]
3. Denning DW, Pleuvry A, Cole DC. Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med mycol. 2013; 51(4):361-70. [DOI:10.3109/13693786.2012.738312]
4. Meersseman W, Lagrou K, Maertens J, Wijngaerden EV. Invasive aspergillosis in the intensive care unit. Clin Infect Dis. 2007; 45(2):205-16. [DOI:10.1086/518852]
5. Maertens JA,Blennow O, Duarte RF, Mu-oz P. The current management landscape: aspergillosis. J Antimicrob Chemother. 2016; 71(2):ii23-9. [DOI:10.1093/jac/dkw393]
6. Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA,Hadley S, Herbrecht R, et al.Practice guidelines for the diagnosis and management of Aspergillosis: 2016 update by the infectious diseases society of America. Clin Infect Dis.2016; 63(4):e1-60. [DOI:10.1093/cid/ciw326]
7. Denning DW, Venkateswarlu K,Oakley KL, Anderson MJ, Manning NJ, Stevens DA, et al.Itraconazole resistancein Aspergillus fumigatus. Antimicrob Agents Chemother.1997;41(6):1364-8.
8. Seyedmousavi S, Hashemi SJ,Zibafar E,Zoll J, Hedayati MT, Mouton JW, et al. Azole-resistant Aspergillus fumigatus, Iran. Emerg Infect Dis.2013; 19(5):832-4. [DOI:10.3201/eid1905.130075]
9. Nabili M, Shokohi T, Moazeni M, Khodavaisy S, Aliyali M, Badiee P, et al. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue? J Med Microbiol.2016; 65(6):468-75. [DOI:10.1099/jmm.0.000255]
10. Snelders E, Rijs AJ, Kema GH, Melchers WJ, Verweij PE. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl and environ microbiol. 2009; 75(12):4053-7. [DOI:10.1128/AEM.00231-09]
11. Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses. 2016; 59(4):198-219. [DOI:10.1111/myc.12469]
12. Escribano P, Peláez T, Mu-oz P, Bouza E, Guinea J. Is azole resistance in Aspergillus fumigatus a problem in Spain? Antimicrob agents chemother. 2013; 57(6):2815-20. [DOI:10.1128/AAC.02487-12]
13. Chowdhary A, Kathuria S, Xu J, Meis JF. Emergence of azole-resistant Aspergillus fumigatus strains due to agricultural azole use creates an increasing threat to human health. PLoS pathog. 2013; 9(10):e1003633. [DOI:10.1371/journal.ppat.1003633]
14. Shalhoub S, Luong M-L, Howard S, Richardson S, Singer L, Chaparro C, et al. Rate of cyp51A mutation in Aspergillus fumigatus among lung transplant recipients with targeted prophylaxis. J Antimicrob Chemother. 2015; 70(4):1064-7. [DOI:10.1093/jac/dku528]
15. Wang HC, Huang JC, Lin YH, Chen YH, Hsieh MI, Choi PC, et al. Prevalence, mechanisms, and genetic relatedness of the human pathogenic fungus Aspergillus fumigatus exhibiting resistance to medical azoles in the environment of Taiwan. Environ Microbiol.2018; 20(1):270-80 [DOI:10.1111/1462-2920.13988]
16. da Silva Ferreira ME, Capellaro JL, dos Reis Marques E, Malavazi I, Perlin D, Park S, et al. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob agents chemother. 2004; 48(11):4405-13. [DOI:10.1128/AAC.48.11.4405-4413.2004]
17. Sheth CC, Johnson E, Baker ME, Haynes K, Mühlschlegel FA. Phenotypic identification of Candida albicans by growth on chocolate agar. Med mycol. 2005; 43(8):735-8. [DOI:10.1080/13693780500265998]
18. Hedayati M, Pasqualotto A, Warn P, Bowyer P, Denning D. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007; 153(6):1677-92. [DOI:10.1099/mic.0.2007/007641-0]
19. Ellis W, Smith J, Simpson B, Khanizadeh S, Oldham J. Control of growth and aflatoxin production of Aspergillus flavus under modified atmosphere packaging (MAP) conditions. Food microbiol. 1993; 10(1):9-21. [DOI:10.1006/fmic.1993.1002]
20. Hall LA, Denning D. Oxygen requirements of Aspergillus species. J of med microbiol. 1994; 41(5):311-5. [DOI:10.1099/00222615-41-5-311]
21. Gilbert M, Mack B, Payne G, Bhatnagar D. Use of functional genomics to assess the climate change impact on Aspergillus flavus and aflatoxin production. World Mycotoxin J. 2016; 9(5):665-72. [DOI:10.3920/WMJ2016.2049]
22. Lang Yona N, Levin Y, Dannemiller KC, Yarden O, Peccia J, Rudich Y. Changes in atmospheric CO2 influence the allergenicity of Aspergillus fumigatus. Glob change Biol. 2013; 19(8):2381-8. [DOI:10.1111/gcb.12219]
23. Tobal JM, Balieiro ME. Role of carbonic anhydrases in pathogenic micro-organisms: a focus on Aspergillus fumigatus. J med microbiol. 2014; 63(1):15-27. [DOI:10.1099/jmm.0.064444-0]
24. Wayne P. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard-second edition. Clin Lab Stand Instit. 2008; 28(16):6-12.
25. Sasani E, Khodavaisy S, Agha Kuchak Afshari S, Darabian S, Aala F, Rezaie S. Pseudohyphae formation in Candida glabrata due to CO2 exposure. Curr Med Mycol. 2016; 2(4):49-52. [DOI:10.18869/acadpub.cmm.2.4.49]
26. Latgé J-P. Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev. 1999; 12(2):310-50.
27. McClenny N. Laboratory detection and identification of Aspergillus species by microsco pic observation and culture: the traditional approach. Med Mycol. 2005; 43(Suppl 1):S125-8. [DOI:10.1080/13693780500052222]
28. Wayne P. Clinical and Laboratory Standards Institute; 2011. CLSI Performance standards for antimicrobial susceptibility testing 20th Informational Supplement CLSI document M100-S21.Clin Lab Stand Instit. 2011; 31(1):1-162
29. Khodavaisy S, Badali H, Hashemi SJ, Aala F, Nazeri M, Nouripour-Sisakht S, et al. In vitro activities of five antifungal agents against 199 clinical and environmental isolates of Aspergillus flavus, an opportunistic fungal pathogen. J Mycol Med. 2016; 26(2):116-21 [DOI:10.1016/j.mycmed.2016.01.002]
30. Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol. 2016; 2(1):36-42. [DOI:10.18869/acadpub.cmm.2.1.36]
31. Papagianni M. Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol adv. 2004; 22(3):189-259. [DOI:10.1016/j.biotechadv.2003.09.005]
32. Bahn Y-S, Cox GM, Perfect JR, Heitman J. Carbonic anhydrase and CO2 sensing during Cryptococcus neoformans growth, differentiation, and virulence. Curr Biol. 2005; 15(22):2013-20 [DOI:10.1016/j.cub.2005.09.047]
33. Du H, Guan G, Xie J, Cottier F, Sun Y, Jia W, et al. The transcription factor Flo8 mediates CO2 sensing in the human fungal pathogen Candida albicans. Mol biol cell. 2012; 23(14):2692-701. [DOI:10.1091/mbc.E12-02-0094]
34. Mogensen EG, Janbon G, Chaloupka J, Steegborn C, Fu MS, Moyrand F, et al. Cryptococcus neoformans senses CO2 through the carbonic anhydrase Can2 and the adenylyl cyclase Cac1. Eukaryot Cell. 2006; 5(1):103-11. [DOI:10.1128/EC.5.1.103-111.2006]
35. Klutts JS, Doering TL. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides. J Biol Chem. 2008; 283(21):14327-34. [DOI:10.1074/jbc.M708927200]
36. Kim MS, Ko Y-J, Maeng S, Floyd A, Heitman J, Bahn Y-S. Comparative transcriptome analysis of the CO2 sensing pathway via differential expression of carbonic anhydrase in Cryptococcus neoformans. Genetics. 2010; 185(4):1207 19. [DOI:10.1534/genetics.110.118315]
37. Yazdanparast SA, Barton RC. Arthroconidia production in Trichophyton rubrum and a new ex vivo model of onychomycosis. J med microbiol. 2006; 55(11):1577-81. [DOI:10.1099/jmm.0.46474-0]
38. Coelho M, Belo I, Pinheiro R, Amaral A, Mota M, Coutinho J, et al. Effect of hyperbaric stress on yeast morphology: study by automated image analysis. Appl microbiol biotechnol. 2004; 66:318-24. [DOI:10.1007/s00253-004-1648-9]
39. Shimoda M, Cocunubo‐Castellanos J, Kago H, Miyake M, Osajima Y, Hayakawa I. The influence of dissolved CO2 concentration on the death kinetics of Saccharomyces cerevisiae. J Appl Microbiol. 2001; 91(2):306-11. [DOI:10.1046/j.1365-2672.2001.01386.x]
40. Shimoda M, Yamamoto Y, Cocunubo‐Castellanos J, Tonoike H, Kawano T, Ishikawa H, et al. Antimicrobial effects of pressured carbon dioxide in a continuous flow system. J Food Science. 1998; 63(4):709-12. [DOI:10.1111/j.1365-2621.1998.tb15819.x]
41. Rhodes JC. Aspergillus fumigatus: growth and virulence. Med mycol. 2006; 44(1):S77-S81. [DOI:10.1080/13693780600779419]
42. Mavridou E, Brüggemann RJ, Melchers WJ, Mouton JW, Verweij PE. Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob agents chemother. 2010; 54(2):860-5. [DOI:10.1128/AAC.00931-09]
43. Krishnan S, Manavathu EK, Chandrasekar PH. Aspergillus flavus: an emerging non fumigatus Aspergillus species of significance. Mycoses. 2009; 52(3):206-22. [DOI:10.1111/j.1439-0507.2008.01642.x]
44. Sanglard D, Ischer F, Koymans L, Bille J. Amino acid substitutions in the cytochrome P-450 lanosterol 14α-demethylase (CYP51A1) from azole-resistant Candida albicans clinical isolates contribute to resistance to azole antifungal agents. Antimicrob Agents Chemother. 1998; 42(2):241-53.
45. Osherov N, Kontoyiannis DP, Romans A, May GS. Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14α-demethylase gene, pdmA. J Antimicrob Chemother. 2001; 48(1):75-81. [DOI:10.1093/jac/48.1.75]
46. Sanglard D, Kuchler K, Ischer F, Pagani J, Monod M, Bille J. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob agents chemother. 1995; 39(11):2378-86. [DOI:10.1128/AAC.39.11.2378]
47. Escribano P, Recio S, Peláez T, González-Rivera M, Bouza E, Guinea J. In vitro acquisition of secondary azole resistance in Aspergillus fumigatus isolates after prolonged exposure to itraconazole: presence of heteroresistant populations. Antimicrob agents chemother. 2012; 56(1):174-8. [DOI:10.1128/AAC.00301-11]
48. Faria-Ramos I, Farinha S, Neves-Maia J, Tavares PR, Miranda IM, Estevinho LM, et al. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole. BMC microbiol. 2014; 14:155. [DOI:10.1186/1471-2180-14-155]

Add your comments about this article : Your username or Email:
CAPTCHA code

Send email to the article author


© 2015 All Rights Reserved | Current Medical Mycology