Volume 3, Issue 4 ( December 2017)                   Curr Med Mycol 2017, 3(4): 21-25 | Back to browse issues page


XML Print


Abstract:   (503 Views)

Background and Purpose

Vulvovaginal candidiasis (VVC) is a common problem in women. The purpose of this study was to identify of Candida species isolated from vulvovaginitis woman suffering vulvovaginitis refered to Ghaem Hospital, Mashhad, Iran, by use of MALDI-TOF mass spectrometry.

 Materials and Methods

The 65 clinical samples isolated from Vulvovaginitis women were collected in Ghaem Hospital. All specimens were identified using phenotypic techniques such as microscopy and culture on Sabouraud dextrose agar and corn meal agar medium,Then, All isolates were detected and were processed for MALDI TOF MS identification.

Results

 Of the 65 isolates analyzed, 61 (93.8%) were recognised by MALDI-TOF mass spectrometry and for four isolates (6.1%) only not relabile identifications were achieved. In this study, the most frequently isolated species were Candida albicans (58.5%), followed by Candida tropicalis (16.9%), Candida glabrata (7.7%), Candida parapsilosis (7.7%) and Candida guillermondii (3.1%).

 Conclusion

presented results demonstrate that the MALDI TOF mass spectrometry is a fast and reliable technique, and has the potential to replace conventional phenotypic identification of Candida species and other yeast strains routinely isolated in clinical microbiology laboratories.

Full-Text [PDF 401 kb]   (206 Downloads)    
Type of Study: Original Articles | Subject: Medical Mycology
Received: 2017/12/25 | Accepted: 2018/02/25 | Published: 2018/03/15

References
1. Crist A, Johnson LM, Burke PJ. Evaluation of the Microbial Identification System for identification of clinically isolated yeasts. Journal of clinical microbiology. 1996;34(10):2408-10.
2. Heelan JS, Sotomayor E, Coon K, Julia B. Comparison of the rapid yeast plus panel with the API20C yeast system for identification of clinically significant isolates of Candida species. Journal of clinical microbiology. 1998;36(5):1443-5.
3. Latouche GN, Daniel H-M, Lee OC, Mitchell TG, Sorrell TC, Meyer W. Comparison of use of phenotypic and genotypic characteristics for identification of species of the anamorph genus Candida and related teleomorph yeast species. Journal of clinical microbiology. 1997;35(12):3171-80.
4. Beck-Sagué CM, Jarvis WR. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. The Journal of infectious diseases. 1993:1247-51. [DOI:10.1093/infdis/167.5.1247]
5. Badiee P, Badali H, Boekhout T, Diba K, Moghadam AG, Nasab AH, et al. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran: comparison of colonizing and infecting isolates. BMC infectious diseases. 2017;17(1):727. [DOI:10.1186/s12879-017-2825-7]
6. Senna PM, da Silva WJ, Del Bel Cury AA. Denture disinfection by microwave energy: influence of Candida albicans biofilm. Gerodontology. 2012;29(2):e186-e91. [DOI:10.1111/j.1741-2358.2010.00439.x]
7. Koh AY, Köhler JR, Coggshall KT, Van Rooijen N, Pier GB. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS pathogens. 2008;4(2):e35. [DOI:10.1371/journal.ppat.0040035]
8. Badiee P, Badali H, Diba K, Moghadam AG, Hosseininasab A, Jafarian H, et al. Susceptibility pattern of Candida albicans isolated from Iranian patients to antifungal agents. Current medical mycology. 2016;2(1):24. [DOI:10.18869/acadpub.cmm.2.1.24]
9. Achkar JM, Fries BC. Candida infections of the genitourinary tract. Clinical Microbiology Reviews. 2010;23(2):253-73. [DOI:10.1128/CMR.00076-09]
10. Fan S, Bai F, Liao Q, Liu Z, Li J, Liu X. Genotype distribution of Candida albicans strains associated with different conditions of vulvovaginal candidiasis, as revealed by microsatellite typing. Sexually transmitted infections. 2008;84(2):103-6. [DOI:10.1136/sti.2007.025700]
11. Sheidaei S, Sadeghi T, Jafarnejad F, Rajabi O, Najafzadeh M. Herbal Medicine and Vaginal Candidiasis in Iran: A Review. Evidence Based Care. 2017;7(2):71-7.
12. Altchek A. Pediatric vulvovaginitis. The Journal of reproductive medicine. 1984;29(6):359-75.
13. Vandeven AM, Emans SJ. Vulvovaginitis in the child and adolescent. Pediatrics in Review. 1993;14(4):141-7. [DOI:10.1542/pir.14-4-141]
14. Sobel J. Vulvovaginitis in healthy women. Comprehensive therapy. 1999;25(6-7):335-46. [DOI:10.1007/BF02944280]
15. Sobel JD. Vaginitis. New England Journal of Medicine. 1997;337(26):1896-903. [DOI:10.1056/NEJM199712253372607]
16. Khorsand I, Ghanbari Nehzag MA, Zarrinfar H, Fata A, Naseri A, Badiee P, et al. Frequency of variety of candida species in women with candida vaginitis referred to clinical centers of Mashhad, Iran. Iranian Journal of Obstetrics, Gynecology and Infertility. 2015;18(168):15-22.
17. Horowitz BJ, Giaquinta D, Ito S. Evolving pathogens in vulvovaginal candidiasis: implications for patient care. The Journal of Clinical Pharmacology. 1992;32(3):248-55. [DOI:10.1002/j.1552-4604.1992.tb03833.x]
18. Freydiere A-M, Guinet R, Boiron P. Yeast identification in the clinical microbiology laboratory: phenotypical methods. Medical mycology. 2001;39(1):9-33. [DOI:10.1080/mmy.39.1.9.33]
19. Sanguinetti M, Porta R, Sali M, La Sorda M, Pecorini G, Fadda G, et al. Evaluation of VITEK 2 and RapID yeast plus systems for yeast species identification: experience at a large clinical microbiology laboratory. Journal of clinical microbiology. 2007;45(4):1343-6. [DOI:10.1128/JCM.02469-06]
20. Verweij P, Breuker I, Rijs A, Meis J. Comparative study of seven commercial yeast identification systems. Journal of clinical pathology. 1999;52(4):271-3. [DOI:10.1136/jcp.52.4.271]
21. Lau A, Chen S, Sorrell T, Carter D, Malik R, Martin P, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. Journal of clinical microbiology. 2007;45(2):380-5. [DOI:10.1128/JCM.01862-06]
22. Leaw SN, Chang HC, Sun HF, Barton R, Bouchara J-P, Chang TC. Identification of medically important yeast species by sequence analysis of the internal transcribed spacer regions. Journal of clinical microbiology. 2006;44(3):693-9. [DOI:10.1128/JCM.44.3.693-699.2006]
23. Montero C, Shea Y, Jones P, Harrington S, Tooke N, Witebsky F, et al. Evaluation of Pyrosequencing® technology for the identification of clinically relevant non-dematiaceous yeasts and related species. European Journal of Clinical Microbiology & Infectious Diseases. 2008;27(9):821-30. [DOI:10.1007/s10096-008-0510-x]
24. Putignani L, Paglia MG, Bordi E, Nebuloso E, Pucillo LP, Visca P. Identification of clinically relevant yeast species by DNA sequence analysis of the D2 variable region of the 25–28S rRNA gene. Mycoses. 2008;51(3):209-27. [DOI:10.1111/j.1439-0507.2007.01472.x]
25. Bessède E, Angla‐gre M, Delagarde Y, Sep Hieng S, Ménard A, Mégraud F. Matrix‐assisted laser‐desorption/ionization biotyper: experience in the routine of a University hospital. Clinical microbiology and infection. 2011;17(4):533-8. [DOI:10.1111/j.1469-0691.2010.03274.x]
26. Bizzini A, Durussel C, Bille J, Greub G, Prod'hom G. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. Journal of clinical microbiology. 2010;48(5):1549-54. [DOI:10.1128/JCM.01794-09]
27. Van Veen S, Claas E, Kuijper EJ. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. Journal of clinical microbiology. 2010;48(3):900-7. [DOI:10.1128/JCM.02071-09]
28. Bille E, Dauphin B, Leto J, Bougnoux ME, Beretti JL, Lotz A, et al. MALDI‐TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures. Clinical microbiology and infection. 2012;18(11):1117-25. [DOI:10.1111/j.1469-0691.2011.03688.x]
29. Lagacé-Wiens PR, Adam HJ, Karlowsky JA, Nichol KA, Pang PF, Guenther J, et al. Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization–time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time. Journal of clinical microbiology. 2012;50(10):3324-8. [DOI:10.1128/JCM.01479-12]
30. Coleman DC, Bennett DE, Sullivan DJ, Gallagher PJ, Henman MC, Shanley DB, et al. Oral Candida in HIV infection and AIDS: new perspectives/new approaches. Critical reviews in microbiology. 1993;19(2):61-82. [DOI:10.3109/10408419309113523]
31. Bader O, Weig M, Taverne‐Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. Clinical Microbiology and Infection. 2011;17(9):1359-65. [DOI:10.1111/j.1469-0691.2010.03398.x]
32. Marklein G, Josten M, Klanke U, Müller E, Horré R, Maier T, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for fast and reliable identification of clinical yeast isolates. Journal of clinical microbiology. 2009;47(9):2912-7. [DOI:10.1128/JCM.00389-09]
33. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, et al. Reclassification of the Candida haemulonii Complex as Candida haemulonii (C. haemulonii Group I), C. duobushaemulonii sp. nov.(C. haemulonii Group II), and C. haemulonii var. vulnera var. nov.: Three Multiresistant Human Pathogenic Yeasts. Journal of clinical microbiology. 2012;50(11):3641-51. [DOI:10.1128/JCM.02248-12]
34. Foxman B, Muraglia R, Dietz J-P, Sobel JD, Wagner J. Prevalence of recurrent vulvovaginal candidiasis in 5 European countries and the United States: results from an internet panel survey. Journal of lower genital tract disease. 2013;17(3):340-5. [DOI:10.1097/LGT.0b013e318273e8cf]
35. Sobel JD. Vulvovaginal candidosis. The Lancet. 2007;369(9577):1961-71. [DOI:10.1016/S0140-6736(07)60917-9]
36. Dhiman N, Hall L, Wohlfiel SL, Buckwalter SP, Wengenack NL. Performance and cost analysis of matrix-assisted laser desorption ionization–time of flight mass spectrometry for routine identification of yeast. Journal of clinical microbiology. 2011;49(4):1614-6. [DOI:10.1128/JCM.02381-10]
37. Sendid B, Ducoroy P, François N, Lucchi G, Spinali S, Vagner O, et al. Evaluation of MALDI-TOF mass spectrometry for the identification of medically-important yeasts in the clinical laboratories of Dijon and Lille hospitals. Medical mycology. 2013;51(1):25-32. [DOI:10.3109/13693786.2012.693631]
38. Stevenson LG, Drake SK, Shea YR, Zelazny AM, Murray PR. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species. Journal of clinical microbiology. 2010;48(10):3482-6. [DOI:10.1128/JCM.00687-09]
39. Qian J, Cutler JE, Cole RB, Cai Y. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Analytical and bioanalytical chemistry. 2008;392(3):439-49. [DOI:10.1007/s00216-008-2288-1]
40. Erhard M, Hipler UC, Burmester A, Brakhage AA, Wöstemeyer J. Identification of dermatophyte species causing onychomycosis and tinea pedis by MALDI‐TOF mass spectrometry. Experimental dermatology. 2008;17(4):356-61. [DOI:10.1111/j.1600-0625.2007.00649.x]
41. L'Ollivier C, Cassagne C, Normand A-C, Bouchara J-P, Contet-Audonneau N, Hendrickx M, et al. A MALDI-TOF MS procedure for clinical dermatophyte species identification in the routine laboratory. Medical mycology. 2013;51(7):713-20. [DOI:10.3109/13693786.2013.781691]
42. Nenoff P, Erhard M, Simon JC, Muylowa GK, Herrmann J, Rataj W, et al. MALDI-TOF mass spectrometry-a rapid method for the identification of dermatophyte species. Medical mycology. 2013;51(1):17-24. [DOI:10.3109/13693786.2012.685186]
43. Theel ES, Hall L, Mandrekar J, Wengenack NL. Dermatophyte identification using matrix-assisted laser desorption ionization–time of flight mass spectrometry. Journal of clinical microbiology. 2011;49(12):4067-71. [DOI:10.1128/JCM.01280-11]
44. Alanio A, Beretti JL, Dauphin B, Mellado E, Quesne G, Lacroix C, et al. Matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry for fast and accurate identification of clinically relevant Aspergillus species. Clinical Microbiology and Infection. 2011;17(5):750-5. [DOI:10.1111/j.1469-0691.2010.03323.x]
45. De Carolis E, Posteraro B, Lass‐Flörl C, Vella A, Florio A, Torelli R, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry. Clinical microbiology and infection. 2012;18(5):475-84. [DOI:10.1111/j.1469-0691.2011.03599.x]
46. Hettick JM, Green BJ, Buskirk AD, Kashon ML, Slaven JE, Janotka E, et al. Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Analytical biochemistry. 2008;380(2):276-81. [DOI:10.1016/j.ab.2008.05.051]