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Abstract
Background and Purpose: Fusarium species are avid producers of secondary toxic and carcinogenic metabolites such as 
fumonisin. Contamination of food and feed products with fumonisin can be hazardous to the health of humans and animals 
and may lead to agricultural loss. Accordingly, in this study, we aimed to evaluate the effects of Candida parapsilosis on 
the growth and fumonisin production of Fusarium species. 
Materials & Methods: Mycelial growth rate of 26 Fusarium isolates, including F. verticillioides (n=6), F. proliferatum 
(n=18), F. solani (n=1), and F. oxysporum (n=1), in the presence of 42 C. parapsilosis strains was investigated by pour-
plate method. The decline in fumonisin production was measured in co-cultured fungi in coarsely ground maize after four 
weeks of incubation in the dark at 22°C, using ELISA technique. For data analysis, paired t-test was performed, using 
SPSS version 20. 
Results: The mycelial growth and fumonisin production of Fusarium isolates significantly decreased in the presence of C. 
parapsilosis in comparison with the control cultures (P<0.05). The percentage of mycelial growth inhibition ranged from 
56.36% to 74.54%. The minimum and maximum decline in total fumonisin production was 12% and 78%, respectively. 
F. oxysporum and F. solani were found to be minor fumonisin producers among the studied Fusarium species. On the 
other hand, a decline was reported in the growth of Fusarium species and fumonisin production in the presence of C. 
parapsilosis. 
Conclusion: C. parapsilosis showed notable inhibitory activities against Fusarium isolates. Therefore, this fungal species 
could be considered as a biocontrol agent against the growth and fumonisin production of toxigenic Fusarium species in 
the future.
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Introduction

Mycotoxins have been long recognized 
as a global problem for human and 
animal health. The threat only increases 

as the demand for available food supplies rises 
in response to world population growth [1]. 
Contamination of staple food grains by fungi has 
been reported in various regions, particularly in 
developing countries. This sort of contamination 
can happen at all stages of plant cultivation, i.e., 
pre-harvest, harvest, and storage stages. 

The safety and nutritional quality of foodstuffs 
are often reduced by fungal toxins, which are 
metabolites produced by several fungal species, 
colonizing staple agricultural products and 
crops exported from developed and developing 

countries. Mold and mycotoxin contamination 
may be detected at any point of the supply 
chain. The climate of tropical and subtropical 
countries provides ideal conditions for mycotoxin 
production, which needs to be controlled by post-
harvest processes, adequate equipments, and 
sound management practices [2].

Fusarium species constitute a group of 
fungi with a worldwide distribution. They are 
recognized as a common cause of contamination 
in various grains and a possible source of different 
mycotoxins, such as fumonisin, zearalenone, and 
trichothecene [3, 4]. Fumonisins are highly toxic 
carcinogenic metabolites, which are usually formed 
in plants, mainly infected with F. verticillioides or 
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F. proliferatum. These metabolites are commonly 
found in maize or other agricultural products prior 
to harvest. 

Food and feed stuff contamination with 
fumonisin is notable for the serious public health 
hazards and the associated economic burden [5-
8]. This mycotoxin, which is structurally similar 
to sphingosine, interferes with the metabolism 
of sphingolipids and leads to cell apoptosis 
[9]. In the literature, leukoencephalomalacia, 
porcine pulmonary edema, hepatotoxicity, and 
hepatocarcinogenicity have been reported as the 
consequences of intoxication by fumonisin in 
horses, pigs, and rats, respectively [10- 13].

Today, fumonisin B1 is known as a risk factor 
for high rates of human esophageal cancer in 
South Africa and China [5-7, 14]. The same 
probably applies to Iran, as high rates of natural 
contamination with Fusarium strains have been 
reported in maize, wheat, and rice by Ghiasian 
et al. [15], Mohammadi-Gholami et al. [16], and 
Alizadeh et al. [8] in areas with major cultivation 
and high risk of esophageal cancer.

Use of   biocontrol agents is an efficient and cost-
effective strategy to control and decrease toxicity 
by fumonisin [17]. The inhibitory properties of 
different fungal and bacterial organisms on the 
growth and mycotoxin production of various 
toxigenic fungal species have been reported in 
several studies. In this regard, Turkel et al. [18] 
introduced Metschnikowia pulcherrima UM15 as 
a highly effective yeast against various Fusarium, 
Aspergillus, and Penicillium species. Similarly, 
Rocha et al. [19] showed the major suppressive 
effect of Bacillus thuringiensis on F. verticillioides 
growth and fumonisin production. 

The antagonistic activities of M. pulcherrima 
strains against Candida tropicalis and C. albicans 
were reported by Csutak and colleagues [20]. 
Furthermore, the efficient inhibitory activities 
of Saccharomyces cerevisiae RC008 and RC016 
strains against the growth and mycotoxin 
production of A. carbonarius and F. graminearum 
were reported by Armando and colleagues [17]. 

Niknejad et al. used C. parapsilosis as 
a biocontrol agent against the growth and 
aflatoxigenicity of Aspergillus species [21]. 
Considering the high toxigenicity of Fusarium 
isolates from different regions of Iran, as reported 
by Mohammad-Gholami et al. [16], control of 
these toxigenic fungi should be taken into account. 

To the best of our knowledge, no study has 
been conducted on the role of C. parapsilosis 

as a biocontrol agent in decreasing fumonisin 
production and growth of Fusarium isolates. 
Accordingly, in this study, we aimed to evaluate 
the effects of C. parapsilosis on the growth and 
fumonisin production of Fusarium isolates.

Materials and Methods
Fungal isolates

A total of 42 clinical C. parapsilosis isolates 
and 26 clinical and environmental Fusarium 
isolates were evaluated in this study. All isolates 
were obtained from the culture bank at the 
medical mycology laboratory of School of Public 
Health, Tehran University of Medical Sciences, 
Tehran, Iran. All fungal strains were stored in 
sterile distilled water. The working cultures were 
prepared from distilled water stocks after being 
transferred to Sabouraud Glucose Agar (SGA; 
Merck, Germany).

Preparation of yeast and conidial suspensions
Cultures of C. parapsilosis on SGA were 

incubated at 30°C for 48 h and were used to prepare 
a suspension of yeast cells with a density of 106 

cells/ml.  Spore production by Fusarium isolates 
was induced on SGA plates, incubated at 28°C for 
48 h. The spores were harvested in sterile water, 
containing 0.05% Tween 20, followed by vigorous 
agitation. Then, the mycelial debris was removed 
by filtration through sterile Whatman No. 1 paper. 
Conidial density was adjusted to 106  cells/ml, 
using a haemocytometer slide. The standard plate 
count method was used on SGA to confirm yeast 
and conidial viability [21].

Effects of C. parapsilosis on the growth of 
Fusarium isolates and fumonisin production

In order to determine the inhibitory effects of C. 
parapsilosis on the growth of Fusarium isolates, 
0.5 ml of each yeast suspension (106 cells/ml) was 
added to each plate (10 mm in diameter), containing 
20 ml of molten SGA at 45°C. After solidification, 
the plates were centrally inoculated with 20 µl of 
conidial suspension of each Fusarium strain. After 
seven days of incubation at room temperature, 
colony diameters were measured using calipers.

The growing diameter of cultures, containing 
Fusarium and C. parapsilosis isolates, was 
compared with the control cultures (free of C. 
parapsilosis). For each colony, the two diameters 
measured at the orthogonal position were averaged 
to determine the mean diameter for each colony. 
All experiments were carried out with two separate 
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replicate plates per treatment. The mean diameter 
of colonies was considered to be indicative of 
evolution. Afterwards, C. parapsilosis isolate with 
the most significant inhibitory effect on growth 
was selected by evaluating its inhibitory effect on 
fumonisin production.

Fusarium isolates were prepared for mycotoxin 
production on autoclaved, ground maize, according 
to mycotoxin protocols with minor modifications 
[15]. Then, 20 g of coarsely ground maize was 
moistened with 20 ml of distilled water in 10 mm 
diameter plates and autoclaved at 121°C for 20 
min over two consecutive days. Briefly, 1 ml of C. 
parapsilosis IPC24A inoculum (106 cells/ml) was 
cultured in the prepared maize medium. Afterwards, 
1 ml of each Fusarium isolate suspension was 
inoculated in the center of the plates. The suspension 
was incubated in the dark at 22°C for four weeks; 
all tests were carried out in triplicate.

Fumonisin extraction and analysis by ELISA 
protocol

Fumonisin was extracted from 5 g of each 
maize medium, using 70% methanol and filtration 
through Whatman No 1 paper. Quantitative 
ELISA technique for the analysis of fumonisin 
was performed after extract dilution, using sterile 
distilled water, according to the manufacturer’s 
instructions in Ridascreen Fumonisin Kit 
(R-Biopharm, Germany). Considering the high 
concentration of toxins, further dilutions of the 
filtrate, i.e., 1:500 and 1:1000, were prepared prior 
to the assay, using distilled water. The results were 
multiplied by the dilution coefficient.

Statistical analysis
For statistical analysis, paired t-test was 

performed, using SPSS version 20. P-value less 
than 0.05 was considered statistically significant.  

Results
The statistical analysis of the results revealed 

a significant difference in colony diameter and 
fumonisin production between co-cultured 
Fusarium and C. parapsilosis isolates and 
the control cultures (Fusarium isolates alone) 
(P<0.05). The mean colony diameter of the control 
cultures and co-cultured isolates was 56.7 mm and 
19.8 mm, respectively (Figure 1). 

Overall, C. parapsilosis strains were able 
to decrease the growth of all Fusarium isolates.  
However, C. parapsilosis IPC24A isolated from 
infected nails was found to be the most effective 
strain, decreasing the colony diameter of Fusarium 
isolates; therefore, this strain was used throughout 
the study. In the present study, the difference 
between decreased growth and fumonisin 
production among the studied Fusarium species 
was insignificant. The detailed results on colony 
diameter and amount of fumonisin production by 
Fusarium isolates are presented in Table 1.

Discussion
Cereal crops such as maize and wheat constitute 

an important part of human food and animal feed. It 
is estimated that 25% of food crops are contaminated 
with mycotoxins, produced by toxigenic fungal 
contaminants [22]. According to the Food and 
Drug Administration (FDA) of USA, the maximum 
acceptable level of total fumonisin is 2-4 ppm in 
corn products consumed by humans [23].

According to the International Agency for 
Research on Cancer, fumonisin is probably 
carcinogenic to humans; consequently, it is 

Figure 1. The inhibitory effects of Candida parapsilosis on the growth rate of Fusarium proliferatum after seven days of incubation at room 
temperature; a) Fusarium proliferatum, b) Fusarium proliferatum in the presence of Candida parapsilosis
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categorized in group 2B of carcinogens [8, 24-27]. 
Considering the toxic and potential carcinogenic 
properties of this mycotoxin, it is necessary to 
apply cost-effective and technically feasible 
methods to decrease or remove this hazardous 
compound [28].

Biological control of phytopathogens using 
microorganisms has been known as an effective   
method [17]. Yeasts are among the most efficient 
microorganisms, used as biocontrol agents. The 
inhibition of growth and mycotoxin production is 
generally attributed to the competition between other 
microorganisms and toxigenic filamentous fungi for 
nutritional, space, and other requirements [17].

In a study conducted by Armando et al., 
Saccharomyces cerevisiae was able to inhibit the 
growth of A. carbonarius and F. graminearum 
and prevent the production of ochratoxin A, 
zearalenone, and deoxynivalenol [17]. This ability 
of S. cerevisiae is speculated to be related to the 

strain-dependent property of mycotoxin absorption 
[29]. Therefore, fungi by absorbing mycotoxin 
lead to the reduction or removal of hazardous 
compounds. The beta-glucan from the cell wall of 
S. cerevisiae is a probable involved compound in 
toxin absorption [21]. 

On the other hand, Csutak et al. reported 
competition for iron as the major mechanism of 
antagonistic action in M. pulcherrima strains 
against C. tropicalis and C. albicans [20]. Matic 
et al. [30] in a previous study investigated the 
efficacy of M. pulcherrima, Pichia guilliermondii, 
and P. anomala as biocontrols against F. fujikuroi. 
They proposed β-1,3-glucanase, fungicides or 
fungistatic compounds (such as ethanol and 
ethyl acetate), and hydrolase enzyme secretion 
as effective mechanisms of M. pulcherrima, P. 
anomala, and P. guilliermondii, respectively. 
Based on these findings, the active role of C. 
parapsilosis in our study might be due to one or a 

 Table 1. The mean colony diameter and amount of fumonisin produced by Fusarium species before and after treatment
with Candida parapsilosis IPC24A

Fumonisins (ppm)
 after treatment 
(reduction%)

Fumonisins (ppm)
before treatment

Colony diameter (mm) after treatment 
 (reduction%)

Mean colony diameter (mm)
before treatmentSpeciesIsolate

200 (35.5)31019 (68.33)60F. proliferatum1M

120 (40)20022 (61.4)57F. proliferatum2M

1750 (12.5)200024 (56.36)55F. proliferatum3M

1600 (20)200018 (67.3)55F. proliferatum4M

148 (32.72)22014 (76.7)60F. proliferatum5M

1670 (16.5)200019 (67.24)58F. verticillioides6M

900 (37.93)145023 (61.7)60F. verticillioides7M

1270 (39.52)210022 (60)55F. proliferatum8M

296 (20)37017 (69)55F. proliferatum9M

0.14 (30)0.222 (61.4)57F. proliferatum10W

1620 (25)216023 (61.7)60F. proliferatum11M

365 (39.16)60016 (40.4)54F. proliferatum12M

1404 (22)180016 (70.9)55F. proliferatum13M

100 (28.57)14015 (71.1)52F. proliferatum14W

737 (24)97021 (61.82)55F. proliferatum15W

260 (87)200022 (60)55F. proliferatum16W

79 (39.23)13014 (74.54)55F. proliferatum17W

123 (38.5)20015 (71.7)53F. verticillioides18M

1760 (12)200023 (61.7)60F. verticillioides19M

1200 (59.6)297021 (63.8)58F. verticillioides20M

580 (40.2)97016 (70.9)55F. verticillioides21C

96 (26.15)13018 (70)60F. proliferatum22C

475 (34.93)73018 (68.9)58F. proliferatum23C

1650 (21.42)210023 (57.4)54F. proliferatum24C

90 (30.76)13020 (65.5)58F. solani25C

85 (39.3)14020 (66.7)60F. oxysporum26C
M: Maize, W: Wheat, C: Clinical, mm: Millimeter, ppm: Parts per million
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combination of these mechanisms. 
In the present study, all Fusarium isolates from 

wheat and maize, as well as the clinical isolates, 
were fumonisin producers. Although F. oxysporum 
is recognized as a non-fumonisin producer species 
[31], our results revealed fumonisin production by 
this Fusarium species. The co-occurrence of other 
Fusarium toxins including nivalenol, zearalenone, 
and deoxynivalenol (DON) with other DON 
derivatives might be a contributing factor, owing 
to the relative cross-reactivity. 

On the other hand, Rheeder et al. introduced 
F. oxysporum (in section Elegans) as a fumonisin-
producing species [32]. In the present study, C. 
parapsilosis exhibited inhibitory effects against all 
Fusarium isolates. The growth rate and fumonisin 
production were significantly lower in co-cultured 
isolates in comparison with C. parapsilosis-
free cultures. In addition, Niknejad et al. [21] 
reported the antagonistic effects of C. parapsilosis 
on mycelia growth and aflatoxin production by 
Aspergillus species .

Bacon et al. reported the antagonistic effects of 
Trichoderma species on the growth and fumonisin 
production of F. moniliforme in comparison 
with the control cultures [33]. Furthermore, the 
role of P. anomala in Penicillium verrucosum 
as an inhibitor of ochratoxin A production has 
been suggested in the literature [17]. A. flavus, 
A. niger, and A. ochraceus have been shown to 
have the ability to reduce fumonisin production 
by Fusarium species and destroy fumonisin [34]. 
Similar to the present results, the efficacy of some 
fungal species as biocontrol agents was confirmed 
in the mentioned study. 

Almost all detoxification methods have some 
limitations. An ideal approach should be cost-
effective, practical, and free of side-effects 
for humans and animals; therefore, combined 
application of different methods may be required. 
Also, unfavorable conditions for mycotoxin 
production should be considered in the storage 
period.    

Conclusion
The antagonistic properties of C. parapsilosis 

strains are of great significance. Considering the 
opportunistic and pathogenic nature of this fungus, 
further research is required on the extracted 
fractions, effective components, and genes of 
this fungus for future use as efficient biocontrols 
against the growth and mycotoxin production of 
Fusarium species. In the present study, the ability 

of Fusarium isolates from different species and 
sources (particularly clinical isolates) to produce 
fumonisin was noteworthy.
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