Investigation of cgrA and cyp51A gene alternations in Aspergillus fumigatus strains exposed to kombucha fermented tea

Document Type : Original Articles

Authors

1 Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

2 Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

3 Persian Medicine and Pharmacy Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran

4 Clinic for Infectious and Tropical Diseases, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

5 Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Background and Purpose: Aspergillus fumigatus is one of the most common opportunistic fungus, which causes infection in immunocompromised and neutropenic patients. The current guidelines recommend voriconazole as the initial therapeutic and prophylactic agent for almost all cases, especially in patients with organ transplants, which leads to increased medication resistance in A. fumigatus. The aim of the present study was to evaluate the antifungal activity and effect of kombucha as a natural compound on A. fumigatus growth, as well as on the expression of cgrA and cyp51A genes.
Materials and Methods: A panel of 15 A. fumigatus strains with two quality controls of CM237 and CM2627 as susceptible and resistant strains were obtained from Tehran Medical Mycology Laboratory, Tehran,Iran(TMML).Antifungal susceptibility testing assay was performed according to the Clinical and Laboratory Standards Institute (CLSI) M38-A2 document. Moreover, the mycelial dry weight of the fungus was calculated before and after being treated with kombucha. In addition, the quantitative changes in the expression of cgrA and cyp51A genes were analyzed by real-time polymerase chain reaction (real-time PCR) technique.
Results: In the present study, the minimum inhibitory concentration ranges of kombucha were measured at 6,170 and 12,300 μg/mL for ten A. fumigatus azole-susceptible strains and 24,700 μg/mL for five A. fumigatus resistant strains. Moreover, changes in mycelial dry weight under kombucha treatment conditions underwent a significant reduction (P≤0.05). A coordinate down-regulation of expression in cgrA and cyp51A genes was observed in all azole-susceptible and -resistant A. fumigatus strains, after treating the fungus with different concentrations of kombucha (P≤0.05).
Conclusion: According to the obtained results, kombucha as a natural antioxidant , can exert inhibitory effects against the growth and expression of some genes in A. fumigatusstrains.

Keywords


1. Van de Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP. Aspergillus fumigatus morphology and dynamic host interactions. Nature Rev Microbiol. 2017; 15(11):661-74.
2. Soubani AO, Chandrasekar PH. The clinical spectrum of pulmonary aspergillosis. Chest. 2002; 121(6):1988-99.
3. Lamoth F. Aspergillus fumigatus-related species in clinical practice. Front Microbiol. 2016; 7:683.
4. Latge JP. Aspergillus fumigatus and Aspergillosis. Clin Microbial Rev. 1999; 12(2):310-50.
5. Rementeria A, Lopez-Molina N, Ludwig A, Vivanco AB, Bikandi J, Ponton J, et al. Genes and molecules involved in
Aspergillus fumigatus virulence. Rev Iberoam Micol. 2005; 22(1):1-23.
6. Patterson TF, Thompson GR 3rd, Denning DW, Fishman JA, Hadley S, Herbrecht R, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016; 63(4):e1-60.
7. Meis JF, Chowdhary A, Rhodes JL, Fisher MC, Verweij PE. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos Trans R Soc B Biol Sci. 2016; 371(1709):20150460.
8. Chowdhary A, Sharma C, Hagen F, Meis JF. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol. 2014; 9(5):697-711.
9. Snelders E, Camps SM, Karawajczyk A, Schaftenaar G, Kema GH, Van der Lee HA, et al. Triazole fungicides can induce cross-resistance to medical triazoles in Aspergillus fumigatus. PLoS One. 2012; 7(3):e31801.
10. Battikh H, Bakhrouf A, Ammar E. Antimicrobial effect of Kombucha analogues. LWT Food Sci Technol. 2012; 47(1):71-7.
11. Sreeramulu G, Zhu Y, Knol W. Kombucha fermentation and its antimicrobial activity. J Agric Food Chem. 2000; 48(6):2589-94.
12. Battikh H, Chaieb K, Bakhrouf A, Ammar E. Antibacterial and antifungal activities of black and green Kombucha teas. J Food Biochem. 2013; 37(2):231-6.
13. Mahmoudi E, Saeidi M, Marashi MA, Moafi A, Mahmoodi V, Zamani MZ. In vitro activity of Kombucha tea ethyl acetate fraction against Malassezia species isolated from seborrhoeic dermatitis. Curr Med Mycol. 2016; 2(4):30-6.
14. Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S, Chakraborty W, et al. Antibacterial activity of polyphenolic fraction of Kombucha against enteric bacterial pathogens. Curr Microbiol. 2016; 73(6):885-96.
15. Jayabalan R, Malbasa RV, Loncar ES, Vitas JS, Sathishkumar M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity and tea fungu. Compr Rev Food Sci Food Saf. 2014; 13(4):538-50.
16. Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding kombucha tea fermentation: a review. J Food Sci. 2018; 83(3):580-8.
17. Buil JB, Hagen F, Chowdhary A, Verweij PE, Meis JF. Itraconazole, voriconazole, and posaconazole CLSI MIC distributions for wild-type and azole-resistant Aspergillus fumigatus isolates. J Fungi. 2018; 4(3):E103.
18. Institute Cals. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard. Pennsylvania: Document M38-A2, CLSI; 2008. P. 1-24.
19. Krishnan S, Manavathu EK, Chandrasekar PH. Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses. 2008; 52(3):206-22.
20. Bromley MJ, van Muijlwijk G, Fraczek MG, Robson G, Verweij PE, Denning DW, et al. Occurrence of azole-resistant species of Aspergillus in the UK environment. J Glob Antimicrob Resist. 2014; 2(4):276-9.
21. Rudramurthy SM, Chakrabarti A, Geertsen E, Mouton JW, Meis JF. In vitro activity of isavuconazole against 208 Aspergillus flavus isolates in comparison with 7 other antifungal agents: assessment according to the methodology of the European
Committee on Antimicrobial Susceptibility Testing. Diagn Microbiol Infect Dis. 2011; 71(4):370-7.
22. Misch EA, Safdar N. Updated guidelines for the diagnosis and management of aspergillosis. J Thorac Dis. 2016; 8(12): E1771-6.
23. Lestrade PP, Bentvelsen RG, Schauwvlieghe AF, Schalekamp S, van der Velden WJ, Kuiper EJ, et al. Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin Infect Dis. 2018; 68(9):1463-71.
24. Nabili M, Shokohi T, Moazeni M, Khodavaisy S, Aliyali M, Badiee P, et al. High prevalence of clinical and environmental triazole-resistant Aspergillus fumigatus in Iran: is it a challenging issue? J Med Microbiol. 2016; 65(6):468-75.
25. Abastabar M, Rahimi N, Meis JF, Aslani N, Khodavaisy S, Nabili M, et al. Potent activities of novel imidazoles lanoconazole and luliconazole against a collection of azole-resistant and-susceptible Aspergillus fumigatus strains. Antimicrob Agents Chemother. 2016; 60(11):6916-9.
26. Deghrigue M, Chriaa J, Battikh H, Abid K, Bakhrouf A. Antiproliferative and antimicrobial activities of Kombucha tea. Afr J Microbiol Res. 2013; 7(27):3466-70.
27. AL-Kalifawi EJ. Study the antimicrobial effect of kombucha tea on bacteria isolated from diabetic foot ulcer. Int J Sci Technol. 2014; 8(4):27-33.
28. Battikh H, Chaieb K, Bakhrouf A, Ammar E. Antibacterial and antifungal activities of black and green Kombucha teas. J Food Biochem. 2013; 37(2):231-6.
29. Kumar V, Joshi VK. Kombucha: technology, microbiology, production, composition and therapeutic value. Intl J Food Ferment Technol. 2016; 6(1):13-24.
30. Bauer‐Petrovska B, Petrushevska‐Tozi L. Mineral and water soluble vitamin content in the Kombucha drink. Int J Food Sci Technol. 2000; 35(2):201-5.
31. Pure AE, Ebrahimipure M. Antioxidant and antibacterial activity of kombucha beverages prepared using banana peel, common nettles and black tea infusion. Appl Food Biotechnol. 2016; 3(2):125-30.
32. Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D. Kombucha tea fermentation: microbial and biochemical dynamics. Int J Food Microbiol. 2016; 220:63-72.
33. Yuniarto A, Anggadiredja K, Aqidah RA. Antifungal activity of Kombucha tea against human pathogenic fungi. Asian J Pharm Clin Res. 2016; 9(5):253-5.
34. Santos Jr RJ, Batista RA, Rodrigues Filho SA, Lima AS. Antimicrobial activity of broth fermented with kombucha colonies. J Microb Biochem Technol. 2009; 1(1):72-8.
35. Bhabhra R, Miley MD, Mylonakis E, Boettner D, Fortwende J, Panepinto JC, et al. Disruption of the Aspergillus fumigatus gene encoding nucleolar protein CgrA impairs thermotolerant growth and reduces virulence. Infect Immun. 2004; 27(8):4731-40.
36. Bhabhra R, Zhao W, Rhodes JC, Askew DS. Nucleolar localization of Aspergillus fumigatus CgrA is temperature-dependent. Fungal Genet Biol. 2006; 43(1):1-7.
37. Perlin DS, Shor E, Zhao Y. Update on antifungal drug resistance. Curr Clin Microbiol Rep. 2015; 2(2):84-95.
38. Mousavi B, Hedayati MT, Teimoori‐Toolabi L, Guillot J, Alizadeh A, Badali H. cyp51A gene silencing using RNA interference in azole‐resistant Aspergillus fumigatus. Mycoses. 2015; 58(12):699-706.
39. Brillowska-Dąbrowska A, Mroczyńska M, Nawrot U, Włodarczyk K, Kurzyk E. Examination of cyp51A and cyp51B expression level of the first Polish azole resistant clinical Aspergillus fumigatus strain. Acta Biochim Pol. 2015; 62(4):837-9.