1. Singh S, Fatima Z, Hameed S. Predisposing factors endorsing Candida infections. Infez Med. 2015; 23(3):211-23.
2. Perlroth J, Choi B, Spellberg B. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 2007; 45(4):321-46.
3. Tanwar J, Das S, Fatima Z, Hameed S. Multidrug resistance: an emerging crisis. Interdiscip Perspect Infect Dis. 2014; 2014:541340.
4. Arendrup MC, Patterson TF. Multidrug-resistant Candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 2017; 216(Suppl 3): S445-51.
5. Dunn MF, Ramírez-Trujillo JA, Hernández-Lucas I. Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology. 2009; 155(Pt 10):3166-75.
6. Kastora SL, Herrero-de-Dios C, Avelar GM, Munro CA, Brown AJ. Sfp1 and Rtg3 reciprocally modulate carbon source-conditional stress adaptation in the pathogenic yeast Candida albicans. Mol Microbiol. 2017; 105(4):620-36.
7. Han L, Reynolds KA. A novel alternate anaplerotic pathway to the glyoxylate cycle in streptomycetes. J Bacteriol. 1997; 179(16):5157-64.
8. Prado RS, Alves RJ, Oliveira CM, Kato L, Silva RA, Quintino GO, et al. Inhibition of Paracoccidioides lutzii Pb01 isocitrate lyase by the natural compound argentilactone and its semi-synthetic derivatives. PLoS One. 2014; 9(4):e94832.
9. Ansari MA, Fatima Z, Hameed S. Glyoxylate cycle: a promising antimicrobial drug target. New Delhi: Daya Publishing House; 2016. P. 333-43.
10. Lorenz MC, Fink GR. Life and death in a macrophage: role of the glyoxylate cycle in virulence. Eukaryot Cell. 2002; 1(5):657-62.
11. Lorenz MC, Fink GR. The glyoxylate cycle is required for
fungal virulence. Nature. 2001; 412(6842):83-6.
12. Ramirez MA, Lorenz MC. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. Eukaryot Cell. 2007; 6(2):280-90.
13. Ansari MA, Fatima Z, Hameed S. Anticandidal effect and mechanisms of monoterpenoid, perillyl alcohol against Candida albicans. PLoS One. 2016; 11(9):e0162465.
14. Singh S, Fatima Z, Hameed S. Citronellal induced disruption of membrane homeostasis and attenuation of its virulence traits. Rev Soc Bras Med Trop. 2016; 49(4):465-72.
15. Yang F, Kravets A, Bethlendy G, Welle S, Rustchenko E. Chromosome 5 monosomy of Candida albicans controls susceptibility to various toxic agents, including major antifungals. Antimicrob Agents Chemother. 2017; 57(10):5026-36.
16. Prasad R, Balzi E, Banerjee A, Khandelwal NK. All about Candida drug resistance CDRs: past, present and future. Yeast. 2019; 36(4):223-33.
17. Prasad R, Banerjee A, Khandelwal NK, Dhamgaye S. The ABCs of Candida albicans multidrug transporter Cdr1. Eukaryot Cell. 2015; 14(12):1154-64.
18. Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother. 2002; 49:973-80.
19. Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol. 2014; 5:202.
20. Cabezón V, Llama-Palacios A, Nombela C, Monteoliva L, Gil C. Nombela C. Analysis of Candida albicans plasma membrane proteome. Proteomics. 2009; 9(20):4770-86.
21. Suchodolski J, Muraszko J, Bernat P, Krasowska A. A crucial role for ergosterol in plasma membrane composition, Localisation, and activity of Cdr1p and H+-ATPase in Candida albicans. Microorganisms. 2019; 7(10):378.
22. Pasrija R, Panwar SL, Prasad R. Multidrug transporters CaCdr1p and CaMdr1p of Candida albicans display different lipid specificities: both ergosterol and sphingolipids are essential for targeting of CaCdr1p to membrane rafts. Antimicrob Agents Chemother. 2008; 52(2):694-704.
23. Walker LA, Gow NA, Munro CA. Elevated chitin content reduces the susceptibility of Candida species to caspofungin. Antimicrob Agents Chemother. 2013; 57(1):146-54.
24. Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog. 2008; 4(4):e1000040.