Phenotypic features and molecular study of airborne Penicillium species isolated in the northern part of the Persian Gulf, Bushehr, Iran

Document Type : Original Articles


1 Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr, Iran

2 Medical Laboratory Sciences Student, Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran

3 Department of Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

4 Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran

5 Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran



Background and Purpose: The main environmental saprobes, such as Penicillium, play an essential role in natural ecosystems as economically, ecologically, and medically important microorganisms. Biodiversity of this genus has not been described in Bushehr city, Iran. The present study is based on air biodiversity of Penicillium species on culture dependent approach and culture-independent technique using partial b-tubulin sequences.
Materials and Methods: By using active sampling with a high volume air sampler, a total of 157 Penicillium isolates were selected and screened for phenotypic characters. For the purposes of the study, 46 strains representative of 11 morphological species were
selected and identified by molecular analysis.
Results: Based on the findings, P. crustosum (18 isolates, 39.1%) and P. chrysogenum (15 isolates, 32.6%) were the most common isolated species, followed by P. brevicompactum, P. rubens, P. citrinum, P. italicum (each 2 isolates, 4.3%), P. olsonii, P. expansum, P. griseofulvum, P. palitans, and P. polonicum (each 1 isolate, 2.1%).Except for P. chrysogenum and P. expansum with floccose colony texture, the rest of the isolated species had velutinous texture.
Conclusion: This is the first report in southern Iran to identify a large number of Penicillium strains isolated from air samples, showing P. crustosum and P. chrysogenum as the most common isolated species.


  1. Houbraken J, Samson R. Phylogeny of Penicillium and the
    segregation of Trichocomaceae into three families. Stud Mycol.
    2011; 70(1):1-51.
    2. Houbraken J, Wang L, Lee HB, Frisvad JC. New sections in
    Penicillium containing novel species producing patulin,
    pyripyropens or other bioactive compounds. Persoonia. 2016;
    3. Visagie C, Houbraken J, Frisvad JC, Hong SB, Klaassen C,
    Perrone G, et al. Identification and nomenclature of the genus
    Penicillium. Stud Mycol. 2014; 78:343-71.
    4. Frisvad JC, Samson RA. Polyphasic taxonomy of
    subgenus Penicillium. A guide to identification of food and airborne terverticillate Penicillia and their mycotoxins. Stud Mycol.
    2004; 49(1):1-174.
    5. Barbosa R, Leong S, Vinnere-Pettersson O, Chen AJ, SouzaMotta CM, Frisvad JC, et al. Phylogenetic analysis of
    and new species from honey, pollen and nests of stingless bees.
    Stud Mycol. 2017; 86:29-51.
    6. Dhakar K, Sharma A, Pandey A. Cold, pH and salt tolerant
    Penicillium spp. inhabit the high altitude soils in Himalaya,
    India. World J Microbiol Biotechnol. 2014; 30(4):1315-24.
    7. Geiser DM, Gueidan C, Miadlikowska J, Lutzoni F, Kauff F,
    Hofstetter V, et al. Eurotiomycetes: eurotiomycetidae and
    chaetothyriomycetidae. Mycologia. 2006; 98(6):1053-64.
    8. Keller NP, Turner G, Bennett JW. Fungal secondary
    metabolism-from biochemistry to genomics. Nature Rev
    Microbiol. 2005; 3(12):937-47.
    9. Pitt J. The current role of
    Aspergillus and Penicillium in human
    and animal health. J Med Vet Mycol. 1994; 32(Suppl 1):17-32.
    10. Fox EM, Howlett BJ. Secondary metabolism: regulation and role
    in fungal biology. Curr Opin Microbiol. 2008; 11(6):481-7.
    11. Odebode A, Adekunle A. Immunologic and inflammatory
    responses in mice after intranasal instillation of spores of
    Aspergillus and Penicillium isolated from outdoor air in South
    West Nigeria. J Taibah Univ Sci. 2019; 13(1):344-50.
    12. Gheybi MK, Movahed AM, Dehdari R, Amiri S, Khazaei HA,
    Gooya M, et al. Dusty air pollution is associated with an
    increased risk of allergic diseases in southwestern part of Iran.
    Iran J Allergy Asthma Immunol. 2014; 13(6):404-11.
    13. Shabankarehfard E, Ostovar A, Farrokhi S, Naeimi B, Zaeri S,
    Nazmara S, et al. Air-and dust-borne fungi in indoor and outdoor
    home of allergic patients in a dust-storm-affected area. Immunol
    Invest. 2017; 46(6):577-89.
    14. Ghasemi FF, Dobaradaran S, Saeedi R, Nabipour I, Nazmara
    S, Abadi DRV, et al. Levels and ecological and health risk
    assessment of PM 2.5-bound heavy metals in the northern part
    of the Persian Gulf. Environ Sci Pollut Res. 2020;
    15. Yamada Y, Makimura K, Merhendi H, Ueda K, Nishiyama Y,
    Yamaguchi H, et al. Comparison of different methods for
    extraction of mitochondrial DNA from human pathogenic
    yeasts. Jpn J Infect Dis. 2002; 55(4):122-5.
    16. Glass NL, Donaldson GC. Development of primer sets designed
    for use with the PCR to amplify conserved genes from
    filamentous ascomycetes. Appl Environ Microbiol. 1995;
    17. Repulles-Albelda A, Montero FE, Holzer AS, Ogawa K, Hutson
    KS, Raga JA. BioEdit: a user-friendly biological sequence
    alignment editor and analysis program for Windows 95/98/NT.
    Nucleic Acids Symposium Ser. 1999; 41:95-8.
    18. Grinn-Gofroń A. Airborne
    Aspergillus and Penicillium in the
    atmosphere of Szczecin, (Poland) (2004–2009). Aerobiologia.
    2011; 27(1):67-76.
    19. Shelton BG, Kirkland KH, Flanders WD, Morris GK. Profiles of
    airborne fungi in buildings and outdoor environments in the
    United States. Appl Environ Microbiol. 2002; 68(4):1743-53.
    20. Etzel RA, Montana E, Sorenson W, Kullman GJ, Allan TM,
    Dearborn DG. Acute pulmonary hemorrhage in infants
    associated with exposure to Stachybotrys atra and other fungi.
    Arch Pediatr Adolesc Med. 1998; 152(8):757-62.
    21. Hodgson MJ, Morey P, Leung WY, Morrow L, Miller D, Jarvis
    BB, et al. Building-associated pulmonary disease from exposure
    Stachybotrys chartarum and Aspergillus versicolor. J Occup
    Environ Med. 1998; 40(3):241-9.
    22. Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis
    P. Health and immunologv study following exposure to
    toxigenic fungi (Stachybotrys chartarum) in a water-damaged
    office environment. Int Arch Occup Environ Health. 1996;
    23. Perrone G, Susca A.
    Penicillium species and their associated
    mycotoxins. Methods Mol Biol. 2017; 1542:107-19.
    24. Gent JF, Ren P, Belanger K, Triche E, Bracken MB, Holford
    TR, et al. Levels of household mold associated with respiratory
    symptoms in the first year of life in a cohort at risk for asthma.
    Environ Health Perspect. 2002; 110(12):A781-6.
    25. Bundy KW, Gent JF, Beckett W, Bracken MB, Belanger K,
    Triche E, et al. Household airborne Penicillium associated with
    peak expiratory flow variability in asthmatic children. Ann
    Allergy Asthma Immunol. 2009; 103(1):26-30. 
     26. Markmann M, Tautz D. Reverse taxonomy: an approach towards
    determining the diversity of meiobenthic organisms based on
    ribosomal RNA signature sequences. Philos Trans R Soc B Biol
    Sci. 2005; 360(1462):1917-24.
    27. Abastabar M, Mirhendi H, Hedayati MT, Shokohi T, RezaeiMatehkolaei A, Mohammadi R, et al. Genetic and
    morphological diversity of the genus penicillium from
    mazandaran and tehran provinces, Iran. Jundishapur J Microbiol.
    2016; 9(1):e28280.
    28. Sepahvand A, Shams GM, Allameh A, Razzaghi AM. Diversity
    and distribution patterns of airborne microfungi in indoor and
    outdoor hospital environments in Khorramabad, Southwest Iran.
    Jundishapur J Microbiol. 2012; 6(2):186-92.
    29. Shams-Ghahfarokhi M, Aghaei-Gharehbolagh S, Aslani N,
    Razzaghi-Abyaneh M. Investigation on distribution of airborne
    fungi in outdoor environment in Tehran, Iran. J Environ Health
    Sci Eng. 2014; 12(1):54.
    30. Sabokbar A, Bakhtiari A, Khosravi A, Zanjani LS. Intraspecies
    molecular segregation of Penicillium species isolated from air in
    Iran using rapid polymerase chain reaction method. Glob Vet.
    2012; 8:119-23.
    31. Sonjak S, Frisvad JC, Gunde-Cimerman N. Genetic variation
    among Penicillium crustosum isolates from arctic and other
    ecological niches. Microbial Ecol. 2007; 54(2):298-305.
    32. Nicoletti R, Manzo E, Ciavatta ML. Occurence and bioactivities of
    funicone-related compounds. Int J Mol Sci. 2009; 10(4):1430-44.
    33. Nicoletti R, Buommino E, De Filippis A, Lopez-Gresa MP,
    Manzo E, Carella A, et al. Bioprospecting for antagonistic
    Penicillium strains as a resource of new antitumor compounds.
    World J Microbiol Biotechnol. 2008; 24(2):189-95.
    34. Elsunni MA, Yang ZD. Secondary metabolites of the endophytic
    fungi Penicillium polonicum and their monoamine oxidase
    inhibitory activity. Chem Natural Comp. 2018; 54(5):1018-9.
    35. Lyratzopoulos G, Ellis M, Nerringer R, Denning D. Invasive
    infection due to Penicillium species other than P. marneffei. J
    Infect. 2002; 45(3):184-95.
    36. Hoffman M, Bash E, Berger S, Burke M, Yust I. Fatal
    necrotizing esophagitis due to Penicillium chrysogenum in a
    patient with acquired immunodeficiency syndrome. Eur J Clin
    Microbiol Infect Dis. 1992; 11(12):1158-60.
    37. Lopez-Martinez R, Neumann L, Gonzalez-Mendoza A. Case
    report: cutaneous penicilliosis due to Penicillium chrysogenum.
    Mycoses. 1999; 42(4):347-9.
    38. Marcela Guevara-Suarez, Deanna A. Sutton, José F. Cano-Lira,
    Dania García, Adela Martin-Vicente, Nathan Wiederhold, Josep
    Guarro, and Josepa Genéa. Identification and antifungal
    susceptibility of Penicillium-like fungi from clinical samples in
    the United States
    39. Xia MC, Bao P, Liu AJ, Zhang SS, Peng TJ, Shen L, et al.
    Isolation and identification of Penicillium chrysogenum strain
    Y5 and its copper extraction characterization from waste printed
    circuit boards. J Biosci Bioeng. 2018; 126(1):78-87.
    40. Sutton TB, Aldwinckle HS, Agnello AM, Walgenbach JF.
    Compendium of apple and pear diseases and pests. St. Paul,
    MN: American Phytopathological Society; 2014.
    41. Barad S, Horowitz SB, Kobiler I, Sherman A, Prusky D.
    Accumulation of the mycotoxin patulin in the presence of
    gluconic acid contributes to pathogenicity of Penicillium
    expansum. Mol Plant Microbe Interact. 2014; 27(1):66-77.
    42. Sanzani S, Reverberi M, Punelli M, Ippolito A, Fanelli C. Study
    on the role of patulin on pathogenicity and virulence of
    Penicillium expansum. Int J Food Microbiol. 2012; 153(3):323-31.
    43. Heischmann S, Dzieciatkowska M, Hansen K, Leibfritz D,
    Christians U. The immunosuppressant mycophenolic acid alters
    nucleotide and lipid metabolism in an intestinal cell model. Sci
    Rep. 2017; 7:45088.
    44. Domhan S, Muschal S, Schwager C, Morath C, Wirkner U,
    Ansorge W, et al. Molecular mechanisms of the antiangiogenic
    and antitumor effects of mycophenolic acid. Mol Cancer Ther.
    2008; 7(6):1656-68.
    45. Min C, Dong H, Liu X, Zhang Z. Screening and identification of
    a Penicillium brevicompactum strain isolated from the fruiting
    body of Inonotus obliquus and the fermentation production of
    mycophenolic acid. Ann Microbiol. 2019; 69(13):1351-60.
    46. Barbosa RN, Bezerra JD, Souza-Motta CM, Frisvad JC, Samson
    RA, Oliveira NT, et al. New Penicillium and Talaromyces
    species from honey, pollen and nests of stingless bees. Antonie
    Van Leeuwenhoek. 2018; 111(10):1883-912.
    47. Föllmann W, Behm C, Degen GH. Toxicity of the mycotoxin
    citrinin and its metabolite dihydrocitrinone and of mixtures of
    citrinin and ochratoxin A in vitro. Arch Toxicol. 2014;
    48. Houbraken JA, Frisvad JC, Samson RA. Taxonomy of
    Penicillium citrinum and related species. Fungal Diversity.
    2010; 44(1):117-33.
    49. Shim SH, Swenson DC, Gloer JB, Dowd PF, Wicklow DT.
    Penifulvin A: A sesquiterpenoid-derived metabolite containing a
    novel dioxa [5, 5, 5, 6] fenestrane ring system from a
    fungicolous isolate of Penicillium g riseofulvum. Organ Lett.
    2006; 8(6):1225-8. 
Volume 7, Issue 2
June 2021
Pages 22-28
  • Receive Date: 13 April 2021
  • Revise Date: 18 July 2021
  • Accept Date: 24 July 2021
  • First Publish Date: 24 July 2021