Monitoring of Candida biofilm inhibition by Galenia africana using real-time impedance-based technology

Document Type : Original Articles

Authors

1 Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa

2 Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.

10.22034/cmm.2024.345240.1541

Abstract

Background and Purpose: Yeasts of the Candida genus are responsible for localized and disseminated infections, especially in immunocompromised populations. These infections are exacerbated by the rapid increase in drug-resistant strains, which limits treatment options and increases patient morbidity and mortality. Therefore, the utilization of easily accessible natural products as alternatives to conventional medicines has gained interest. South Africa is home to a rich biodiverse natural flora of which many are known for their antimicrobial activity, including the antifungal effects of their plant extracts. Galenia africana (kraalbos) is a local indigenous plant found to have various traditional uses, including the treatment and prevention of various human infections.
Materials and Methods: In this study, the activity of G. africana against Candida albicans and Candida glabrata preformed biofilm formation and its antibiofilm activity were tested using the xCELLigence system, which monitors biofilm formation in real time using impedance.
Results: Presence of G. africana resulted in a dose-dependent decrease in Candida biofilms and was found to be effective in the prevention of Candida biofilm formation and disruption of the existing Candida biofilms.
Conclusion: The xCELLigence impedance-based system proved to be an effective tool for medication screening. To the best of our knowledge, this is the first reported study to use real-time monitoring of a medicinal plant on microbial biofilm formation.  

Keywords

Main Subjects


  1. Lortholary O, Renaudat C, Sitbon K, Madec Y, Denoeud-Ndam L, Wolff M, et al. Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002-2010). Intensive Care Med. 2014;40(9):1303-12.
  2. Sasso M, Roger C, Sasso M, Poujol H, Barbar S, Lefrant JY, et al. Changes in the distribution of colonising and infecting Candida isolates, antifungal drug consumption and susceptibility in a French intensive care unit: a 10-year study. Mycoses. 2017;60(12):770-80.
  3. Montagna MT, Caggiano G, Lovero G, De Giglio O, Coretti C, Cuna T, et al. Epidemiology of invasive fungal infections in the intensive care unit: results of a multicentre Italian survey (AURORA Project). Infection. 2013;41(3):645-53.
  4. Guo F, Yang Y, Kang Y, Zang B, Cui W, Qin B, et al. Invasive candidiasis in intensive care units in China: a multicentre prospective observational study. J Antimicrob Chemother. 2013; 68(7):1660-8.
  5. Puig-Asensio M, Peman J, Zaragoza R, Garnacho-Montero J, Martin-Mazuelos E, Cuenca-Estrella M, et al. Impact of therapeutic strategies on the prognosis of candidemia in the ICU. Crit Care Med. 2014;42(6):1423-32.
  6. Ahmad A, Husain A, Khan S, Mujeeb M, Bhandari A. Design, synthesis, molecular properties and antimicrobial activities of some novel 2(3H) pyrrolone derivatives. J Saudi Chem Soc. 2015;19(3):340-6.
  7. Hoenigl M, Salmanton-García J, Egger M, Gangneux JP, Bicanic T, Arikan-Akdagli S, et al. Guideline adherence and survival of patients with candidaemia in Europe: results from the ECMM Candida III multinational European observational cohort study. Lancet Infect Dis. 2023;23(6):751-61.
  8. Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev. 2024;88(2):e0002123.
  9. Timmermans B, De Las Peñas A, Castaño I, Van Dijck P. Adhesins in Candida glabrata. J Fungi (Basel). 2018;4(2):60.
  10. Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature. 2016;529(7586):336-43.
  11. Fairlamb AH, Gow NA, Matthews KR, Waters AP. Drug resistance in eukaryotic microorganisms. Nat Microbiol. 2016;
    1(7):1-33.
  12. Robbins N, Wright GD, Cowen LE. Antifungal Drugs: The current armamentarium and development of new agents. Microbiol Spectr. 2016;4(5):1-20.
  13. Cornely OA, Bassetti M, Calandra T, Garbino J, Kullberg BJ, Lortholary O, et al. ESCMID* guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect. 2012;18(Suppl 7):19-37.
  14. Elhoufi A, Ahmadi A, Asnaashari AM, Davarpanah MA, Bidgoli BF, Moghaddam OM, et al. Invasive candidiasis in critical care setting, updated recommendations from “Invasive Fungal Infections-Clinical Forum”, Iran. World J Crit Care Med. 2014;3(4):102-12.
  15. Pappas PG, Kauffman CA, Andes DR, Clancy CJ, Marr KA, Ostrosky-Zeichner L, et al. Clinical practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin Infect Dis. 2016;62(4):e1-50.
  16. Bienvenu AL, Pradat P, Guerin C, Aubrun F, Fellahi JL, Friggeri A, et al. Evaluation of first-line therapies for the treatment of candidemia in ICU patients: a propensity score analysis. Int J Infect Dis. 2020;93:15-21.
  17. Perlin DS. Echinocandin Resistance in Candida. Clin Infect Dis. 2015;61(Suppl 6):S612-7.
  18. Pham CD, Iqbal N, Bolden CB, Kuykendall RJ, Harrison LH, Farley MM, et al. Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother. 2014;58(8):4690-6.
  19. Perlin Mechanisms of echinocandin antifungal drug resistance. Ann N Y Acad Sci. 2015;1354(1):1-11.
  20. Hull CM, Bader O, Parker JE, Weig M, Gross U, Warrilow AGS, et al. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother. 2012;56(12):6417-21.
  21. Thompson III GR, Wiederhold NP, Vallor AC, Villareal NC, Lewis JS, Patterson TF. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata Antimicrob Agents Chemother. 2008;52(10):3783-5.
  22. Fekkar A, Dannaoui E, Meyer I, Imbert S, Brossas JY, Uzunov M, et al. Emergence of echinocandin-resistant Candida in a hospital setting: a consequence of 10 years of increasing use of antifungal therapy? Eur J Clin Microbiol Infect Dis. 2014;33(9):1489-96.
  23. Ramage G, Rajendran R, Sherry L, Williams C. Fungal biofilm resistance. Int J Microbiol. 2012;2012:1-14.
  24. Rautemaa R, Ramage G. Oral candidosis – clinical challenges of a biofilm disease. Crit Rev Microbiol. 2011;37(4):328-36.
  25. Pierce CG, Uppuluri P, Tristan AR, Wormley FL, Mowat E, Ramage G, et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc. 2008;3(9):1494-500.
  26. Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33(8):1387-92.
  27. Mukherjee PK, Chandra J, Kuhn DM, Ghannoum MA. Mechanisms of azole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun. 2003;71(8):4333-40.
  28. Shahzad M, Sherry L, Rajendran R, Edwards CA, Combet E, Ramage, G. Utilizing polyphenols for the clinical management of Candida albicans Int J Antimicrob Agents. 2014;44(3):269-73.
  29. Gulati M, Nobile CJ. Candida albicans biofilms: development, regulation, and molecular mechanisms. Microbes Infect. 2016;18(5):310-21.
  30. Nett JE, Andes DR. Contributions of the biofilm matrix to Candida J Fungi (Basel). 2020;6(1):21.
  31. Tumbarello M, Posteraro B, Trecarichi EM, Fiori B, Rossi M, Porta R, et al. Biofilm production by Candida species and inadequate antifungal therapy as predictors of mortality for patients with candidemia. J Clin Microbiol. 2007;45(6):1843-50.
  32. Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P. Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr Opin Microbiol. 2019;52:1-6.
  33. World Health Organization. WHO fungal priority pathogens list to guide research, development and public health action. Geneva. WHO. 2022.
  34. Kabir MA, Hussain MA, Ahmad Z. Candida albicans: a model organism for studying fungal pathogens. ISRN Microbiol. 2012;2012:1-15.
  35. Afolayan AJ, Lewu FB. Antimicrobial activity of Alepidea amatymbica. Pharm Biol. 2009;47:436-9.
  36. Samber N, Khan A, Varma A, Manzoor N. Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharm Biol. 2015;53(10):1496-504.
  37. Armengol ES, Harmanci M, Laffleur F. Current strategies to determine antifungal and antimicrobial activity of natural compounds. Microbiol Res. 2021;252:1-12.
  38. Twilley D, Rademan S, Lall N. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. J Ethnopharmacol. 2020;261:1-17.
  39. Mudau FN, Chimonyo VGP, Modi AT, Mabhaudhi T. Neglected and underutilised crops: a systematic review of their potential as food and herbal medicinal crops in South Africa. Front Pharmacol. 2022;12(809866):1-31.
  40. Kellerman TS, Coetzer JAW, Naude TW. Plant poisoning and mycotoxicoses of livestock in Southern Africa. Cape Town, South Africa: Oxford University Press. 1988.
  41. Vries FA, El Bitar H, Green IR, Klaasen JA, Mabulesa WT, Bodo B, et al. An antifungal active extract from the aerial parts of Galenia africana. 11th NAPRECA symposium book of proceedings, Antananarivo, Madagascar. 2005:123-31.
  42. Ng’uni TL, dos Santos Abrantes PM, McArthur C, Klaasen JA, Fielding BC. Evaluation of synergistic anticandidal activity of Galenia africana extract and fluconazole against Candida albicans and Candida glabrata. J Herb Med. 2022;32:100503.
  43. Dias LG, Meirinho SG, Veloso AC, Rodrigues LR, Peres AM. Electronic tongues and aptasensors. InBioinspired Materials for Medical Applications. Woodhead Publishing. 2017:371-402.
  44. Junka AF, Janczura A, Smutnicka D, Mączyńska B, Anna S, Nowicka J, et al. Use of the real time xCELLigence system for purposes of medical microbiology. Pol J Microbiol. 2012;61(3):191-7.
  45. Kho D, MacDonald C, Johnson R, Unsworth CP, O'Carroll SJ, du Mez E, et al. Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors. 2015;5(2):199-222.
  46. Ferrer MD, Rodriguez JC, Alvarez L, Artacho L, Royo G, Mira A. Effect of antibiotics on biofilm inhibition and induction measured by real-time cell analysis. J Appl Microbiol. 2017;122(3):640-50.
  47. Hamidi H, Lilja J, Ivaska J. Using xCELLigence RTCA instrument to measure cell adhesion. Bio-protoc. 2017;7(24):1-16.
  48. Alshanta OA, Shaban S, Nile CJ, McLean W, Ramage G. Candida albicans biofilm heterogeneity and tolerance of clinical isolates: Implications for secondary endodontic infections. Antibiotics (Basel). 2019;8(4):204.
  49. Abrantes PM, Africa CW. Measuring Streptococcus mutans, Streptococcus sanguinis and Candida albicans biofilm formation using a real-time impedance-based system. J Microbiol Methods. 2020;169:1-5.
  50. Abrantes PM, Behardien K, Africa CW. Real-time assessment of interspecies Candida biofilm formation. Open Microbiol J. 2022;16:1-8.
  51. Leonhard M, Zatorska B, Moser D, Tan Y, Schneider-Stickler B. Evaluation of combined growth media for in vitro cultivation of oropharyngeal biofilms on prosthetic silicone. J Mater Sci Mater Med. 2018;29(4): 45.
  52. Dunn MJ, Fillinger RJ, Anderson LM, Anderson MZ. Automated quantification of Candida albicans biofilm-related phenotypes reveals additive contributions to biofilm production. NPJ Biofilms Microbiomes. 2020;6(1):36.
  53. Martinez-Serra J, Gutierrez A, Muñoz-Capó S, Navarro-Palou M, Ros T, Amat JC, et al. xCELLigence system for real-time label-free monitoring of growth and viability of cell lines from hematological malignancies. Onco Targets Ther. 2014;7:985-94.
  54. Urcan E, Haertel U, Styllou M, Hickel R, Scherthan H, Reichl FX. Real-time xCELLigence impedance analysis of the cytotoxicity of dental composite components on human gingival fibroblasts. Dent Mater J. 2010;26(1):51-8.
  55. Guan N, Deng J, Li T, Xu X, Irelan JT, Wang MW. Label-free monitoring of T cell activation by the impedance-based xCELLigence system. Mol Biosyst. 2013;9(5):1035-43.
  56. Gutiérrez D, Hidalgo-Cantabrana C, Rodríguez A, García P, Ruas-Madiedo P. Monitoring in real time the formation and removal of biofilms from clinical related pathogens using an impedance-based technology. PloS One. 2016;11(10):1-17.
  57. Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80(3):903-8.
  58. Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum M. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol. 2001;183(18):5385-94.
  59. Jin Y, Yip HK, Samaranayake YH, Yau JY, Samaranayake LP. Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeasts carriage in cases of Human Immunodeficiency Virus infection. J Clin Microbiol. 2003;41(7):2961-7.
  60. Taff HT, Nett JE, Andes DR. Comparative analysis of Candida biofilm quantitation assays. Med Mycol. 2012;50(2):214-8.
  61. van Duuren JBJH, Müsken M, Karge B, Tomasch J, Wittmann C, Häussler S, et al. Use of single-frequency impedance spectroscopy to characterize the growth dynamics of biofilm formation in Pseudomonas aeruginosa. Sci Rep. 2017;7(1):1-12.
  62. Garrett TR, Bhakoo M, Zhang Z. Bacterial adhesion and biofilms on surfaces. Prog Nat Sci. 2008;18(9):1049-56.
  63. Mativandlela SPN, Muthivhi T, Kikuchi H, Oshima Y, Hamilton C, Hussein AA, et al. Antimycobacterial flavonoids from the leaf extract of Galenia africana. J Nat Prod. 2009;72(12):2169-71.
  64. Ticha LA, Klaasen JA, Green IR, Naidoo S, Baker B, Pietersen RD. Phytochemical and antimicrobial screening of flavanones and chalcones from Galenia africana and Dicerothamnus rhinocerotis. Nat Prod Commun. 2015;10(7):1185-90.
  65. Friedlander A, Nir S, Reches M, Shemesh M. Preventing biofilm formation by dairy-associated bacteria using peptide-coated surfaces. Front Microbiol. 2019;10:1405.
  66. Ramage G, López-Ribot JL. Techniques for antifungal susceptibility testing of Candida albicans Methods Mol Med. 2005;118:71-9.
  67. Pugazhendhi AS, Wei F, Hughes M, Coathup M. Bacterial adhesion, virulence, and biofilm formation. InMusculoskeletal Infection. 2022:19-64.
  68. Khun DM, Chandra J, Mukherjee PK, Ghannoum, MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70(2):878-88.
  69. Marak MB, Dhanashree B. Antifungal susceptibility and biofilm production of Candida isolated from clinical samples. Int J Microbiol. 2018;2018:1-5.