Evaluation of the efficacy of novel topical antifungal agents against dermatophytes in North India: A prospective study

Document Type : Original Articles

Authors

1 Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India

2 Department of Dermatology, Venereology and Leprosy, King George's Medical University, Lucknow, Uttar Pradesh, India

10.22034/cmm.2024.345268.1562

Abstract

Background and Purpose: Dermatophytosis, a fungal infection targeting keratinized tissue, is caused by dermatophytes, commonly affecting skin, hair, and nails. Prevalent in tropical regions, such as India, its treatment typically utilizes systemic and topical antifungal medications. Despite ample research on oral antifungals, data on the susceptibility of topical treatments, especially in India, where they are prevalent, remains scarce. This study aimed to investigate the antifungal susceptibility of efinaconazole, tavaborole, luliconazole, and sertaconazole against dermatophytes isolated from cases of dermatophytosis.
Materials and Methods: Samples of all the clinically diagnosed cases of dermatophytosis were subjected to microscopy and culture. All 204 dermatophytes, namely Trichophyton rubrum (n=90), Trichophyton mentagrophytes/interdigitale (n=69), Trichophyton tonsurans (n=44), and Epidermophyton floccosum (n=1) were subjected to antifungal susceptibility testing for efinaconazole, tavaborole, sertaconazole, and luliconazole per Clinical Laboratory Standards Institute broth microdilution method (M38-A3).
Results: The minimum inhibitory concentration values for efinaconazole, tavaborole, sertaconazole, and luliconazole were within the ranges of 0.008-0.5, 1-2, 0.128-2, and 0.004-0.008 µg/ml, respectively across all dermatophytes. Epidemiological cutoff values (ECVs) were 0.004 µg/ml for luliconazole and 2 µg/ml for tavaborole for all dermatophytes. Sertaconazole ECVs were 2 µg/ml for T. rubrum and T. mentagrophytes/interdigitale, 0.5 µg/ml for T. tonsurans, and 1 µg/ml for E. floccosum. Tavaborole ECVs for T. mentagrophytes/interdigitale, T. tonsurans, T. rubrum, and E. floccosum were 0.5, 0.5, 0.25, and 0.016 µg/ml, respectively.
Conclusion: The results from the present study on the in vitro performance of newer topical antifungals suggested that they hold significant promise as prospective candidates for advancing the development of new antifungal treatments for dermatophytosis.

Keywords

Main Subjects


  1. Surendran K, Bhat RM, Boloor R, Nandakishore B, Sukumar D. A clinical and mycological study of dermatophytic infections. Indian J Dermatol. 2014;59(3):262-7.
  2. Walsh TJ, Dixon DM. Spectrum of Mycoses. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston. 1996.
  3. Verma SB, Panda S, Nenoff P, Singal A, Rudramurthy SM, Uhrlass S, et al. The unprecedented epidemic-like scenario of dermatophytosis in India: I. Epidemiology, risk factors and clinical features. Indian J Dermatol Venereol Leprol. 2021;87(2):154-75.
  4. Rajagopalan M, Inamadar A, Mittal A, Miskeen AK, Srinivas CR, Sardana K, et al. Expert Consensus on The Management of Dermatophytosis in India (ECTODERM India). BMC Dermatol. 2018;18(1):6.
  5. Sahni K, Singh S, Dogra S. Newer Topical Treatments in Skin and Nail Dermatophyte Infections. Indian Dermatol Online J. 2018;9(3):149-58.
  6. Poddar S, Das A, Hay RJ, Wollina U. Newer Therapies in Dermatophytosis. Indian J Dermatol. 2023;68(5):515-9.
  7. Lipner SR, Scher RK. Efinaconazole in the treatment of onychomycosis. Infect Drug Resist. 2015;8:163-72.
  8. Mahajan K, Grover C, Relhan V, Tahiliani S, Singal A, Shenoy MM, et al. Nail Society of India (NSI) Recommendations for Pharmacologic Therapy of Onychomycosis. Indian Dermatol Online J. 2023;14(3):330-41.
  9. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. In CLSI document M38Ed3. Clinical and Laboratory Standards Institute. 2017.
  10. Lockhart SR, Ghannoum MA, Alexander BD. Establishment and Use of Epidemiological Cutoff Values for Molds and Yeasts by Use of the Clinical and Laboratory Standards Institute M57 Standard. J Clin Microbiol. 2017;55(5):1262-8.
  11. Das S, De A, Saha R, Sharma N, Khemka M, Singh S, et al. The Current Indian Epidemic of Dermatophytosis: A Study on Causative Agents and Sensitivity Patterns. Indian J Dermatol. 2020;65(2):118-22.
  12. Hosthota A, Gowda T, Manikonda R. Clinical profile and risk factors of dermatophytoses: a hospital based study. Int J Res Dermatol. 2018;4(4):508-13.
  13. Verma S, Verma G, Sharma V, Bhagra S, Negi A, Tegta GR. Current spectrum of dermatophytosis in a tertiary care hospital of North India–A 6-year clinico-mycological study. J Med Sci Clin Res. 2017;5(3):19488-94.
  14. Singh S, Beena PM. Profile of dermatophyte infections in Baroda. Indian J Dermatol Venereol Leprol. 2003;69(4):281-3.
  15. Karmakar S, Kalla G, Joshi KR. Dermatophytoses in a desert district of Western Rajasthan. Indian J Dermatol Venereol Leprol. 1995;61(5):280-3.
  16. Surja SS, Hermawan M, Wijaya M, Pramanta P, Yolanda H. Uncontrolled blood sugar tends to increase prevalence of dermatomycosis in diabetic type 2 patients. Universa Medicina. 2018;37(3):188-94.
  17. Agrawal S, Singal A, Grover C, Das S, Arora VK, Madhu SV. Prevalence of onychomycosis in patients with diabetes mellitus: A cross-sectional study from a tertiary care hospital in North India. Indian J Dermatol Venereol Leprol. 2023;89(5):710-7.
  18. Singh S, Verma P, Chandra U, Tiwary NK. Risk factors for chronic and chronic-relapsing tinea corporis, tinea cruris and tinea faciei: Results of a case-control study. Indian J Dermatol Venereol Leprol. 2019;85(2):197-200.
  19. Bindu V, Pavithran K. Clinico-mycological study of dermatophytosis in Calicut. Indian J Dermatol Venereol Leprol. 2002;68(5):259-61.
  20. Hanumanthappa H, Sarojini K, Shilpashree P, Muddapur SB. Clinicomycological study of 150 cases of dermatophytosis in a tertiary care hospital in South India. Indian J Dermatol. 2012;57(4):322-3.
  21. Hazarika D, Jahan N, Sharma A. Changing Trend of Superficial Mycoses with Increasing Nondermatophyte Mold Infection: A Clinicomycological Study at a Tertiary Referral Center in Assam. Indian J Dermatol. 2019;64(4):261-5.
  22. Azrad M, Freidus V, Kassem R, Peretz A. Identification of dermatophytes by MALDI-TOF MS technology in the clinical laboratory. Int J Mass Spectrom. 2019;440(4):32-6.
  23. Patel SS, Kumari N, Prasad J,Agarwal A, Arya A, Singh D. Dermatophytosis: North India.Ann. Int Med Den Res. 2018;4(4):MB01-5.
  24. Kumar P, Ramachandran S, Das S, Bhattacharya SN, Taneja B. Insights into Changing Dermatophyte Spectrum in India Through Analysis of Cumulative 161,245 Cases Between 1939 and 2021. Mycopathologia. 2023;188(3):183-202.
  25. Rezaei-Matehkolaei A, Khodavaisy S, Alshahni MM, Tamura T, Satoh K, Abastabar M, et al. In Vitro Antifungal Activity of Novel Triazole Efinaconazole and Five Comparators against Dermatophyte Isolates. Antimicrob Agents Chemother. 2018;62(5):e02423-17.
  26. Tahiliani S, Saraswat A, Lahiri AK, Shah A, Hawelia D, Shah GK, et al. Etiological prevalence and antifungal sensitivity patterns of dermatophytosis in India - A multicentric study. Indian J Dermatol Venereol Leprol. 2021;87(6):800-6.
  27. Rana DK, Shah TS, Rohit MH, Patel NH, Khadela AD, Oza YP, et al. Evaluation of the benefit of the addition of 1% topical luliconazole versus topical bland emollient to the systemic itraconazole therapy for the management of disseminated dermatophytosis: A randomised control trial. Mycoses. 2024;67(1):e13681.
  28. Rudramurthy SM, Shankarnarayan SA, Dogra S, Shaw D, Mushtaq K, Paul RA, et al. Mutation in the Squalene Epoxidase Gene of Trichophyton interdigitale and Trichophyton rubrum Associated with Allylamine Resistance. Antimicrob Agents Chemother. 2018;62(5):e02522-17.
  29. Carillo-Muñoz AJ, Tur-Tur C. Comparative study of antifungal activity of sertaconazole, terbinafine, and bifonazole against clinical isolates of Candida, Cryptococcus neoformans and dermatophytes. Chemotherapy. 1997;43(6):387-92.
  30. Blanchard G, Amarov B, Fratti M, Salamin K, Bontems O, Chang YT, et al. Reliable and rapid identification of terbinafine resistance in dermatophytic nail and skin infections. J Eur Acad Dermatol Venereol. 2023;37(10):2080-9.
  31. Carrillo-Muñoz AJ, Quindós G, Del Valle O, Santos P, Giusiano G, Guardia C, et al. In vitro antifungal activity of sertaconazole nitrate against recent isolates of onychomycosis causative agents. J Chemother. 2008;20(4):521-3.
  32. Jo Siu WJ, Tatsumi Y, Senda H, Pillai R, Nakamura T, Sone D, et al. Comparison of in vitro antifungal activities of efinaconazole and currently available antifungal agents against a variety of pathogenic fungi associated with onychomycosis. Antimicrob Agents Chemother. 2013;57(4):1610-6.
  33. Markham A. Tavaborole: first global approval. Drugs. 2014;74(13):1555-8.
  34. Tachibana H, Kumagai N, Tatsumi Y. Fungicidal Activity in the Presence of Keratin as an Important Factor Contributing to In Vivo Efficacy: A Comparison of Efinaconazole, Tavaborole, and Ciclopirox. J Fungi. 2017;3(4):58.
  35. Saunders J, Maki K, Koski R, Nybo SE. Tavaborole, Efinaconazole, and Luliconazole: Three New Antimycotic Agents for the Treatment of Dermatophytic Fungi. J Pharm Pract. 2017;30(6):621-30.
  36. Hui X, Baker SJ, Wester RC, Barbadillo S, Cashmore AK, Sanders V, et al. In Vitro penetration of a novel oxaborole antifungal (AN2690) into the human nail plate. J Pharm Sci. 2007;96(10):2622-31.
  37. Sardana K, Arora P, Mahajan K. Intracutaneous pharmacokinetics of oral antifungals and their relevance in recalcitrant cutaneous dermatophytosis: Time to revisit basics. Indian J Dermatol Venereol Leprol. 2017;83(6):730-2.
  38. Shaw D, Singh S, Dogra S, Jayaraman J, Bhat R, Panda S, et al. MIC and Upper Limit of Wild-Type Distribution for 13 Antifungal Agents against a Trichophyton mentagrophytes-Trichophyton interdigitale Complex of Indian Origin. Antimicrob Agents Chemother. 2020;64(4):e01964-19.