Nakaseomyces glabratus drug resistance genes expression in vulvovaginal candidiasis: a systematic review

Document Type : Reviews

Authors

1 Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical

2 Department of Medical Parasitology and Mycology, School of Medicine, Babol University of Medical Sciences, Babol, Iran. Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical

3 Department of Obstetrics and Gynecology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.

4 Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran

10.22034/cmm.2024.345286.1573

Abstract

Background and Purpose: Antifungal resistance in Nakaseomyces glabratus presents a notable obstacle in the management of vulvovaginitis. Comprehension of drug-resistance gene expression is fundamental in the development of efficacious treatment strategies. This systematic review endeavored to ascertain the existing knowledge regarding the expression of drug resistance genes in N. glabratus associated with vulvovaginal candidiasis by the amalgamation of published research findings.
Materials and Methods: Under the PRISMA guidelines, a systematic review was conducted from January 2000 to December 2024, utilizing the articles from "Web of Sciences", "PubMed", and "Scopus". The search incorporated the terms C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis) in conjunction with drug resistance gene expression in N. glabratus and closely related species with vulvovaginal candidiasis. The review was restricted to publications in English. The data extraction process employed EndNote software (version 21.4), and a meticulous selection process was undertaken to identify relevant studies.
Results: Three eligible studies reported an increase in the expression of the CDR1 gene in fluconazole-resistant N. glabratus, suggesting the presence of efflux mechanisms that reduce drug accumulation. Another study found enhanced CDR1 expression in fluconazole-resistant C. nivariensis, indicating the existence of similar resistance mechanisms. The observed variations in gene expression profiles between N. glabratus and C. nivariensis underscore the presence of diverse resistance mechanisms.
Conclusion: Review of the previous studies showed that the CDR1 gene was the most important resistance gene and that this resistance is more evident in C. nivarensis, compared to N. glabratus.

Keywords

Main Subjects


  1. Bradfield Strydom M, Khan S, Walpola RL, Ware RS, Tiralongo E. Interplay of the microbiome and antifungal therapy in recurrent vulvovaginal candidiasis (RVVC): A narrative review. J Med Microbiol. 2023;72(5):001705.
  2. Denning DW. Renaming Candida glabrata-A case of taxonomic purity over clinical and public health pragmatism. PLoS Pathog. 2024;20(3):e1012055.
  3. Li J, Shan Y, Fan S, Liu X. Prevalence of Candida nivariensis and Candida bracarensis in vulvovaginal Candidiasis. Mycopathologia. 2014;178(3-4):279-83.
  4. Lotfali E, Erami M, Fattahi M, Nemati H, Ghasemi Z, Mahdavi E. Analysis of molecular resistance to azole and echinocandin in Candida species in patients with vulvovaginal candidiasis. Curr Med Mycol. 2022;8(2):1-7.
  5. Arastehfar A, Daneshnia F, Zomorodian K, Najafzadeh MJ, Khodavaisy S, Zarrinfar H, et al. Low Level of Antifungal Resistance in Iranian Isolates of Candida glabrata Recovered from Blood Samples in a Multicenter Study from 2015 to 2018 and Potential Prognostic Values of Genotyping and Sequencing of PDR1. Antimicrob Agents Chemother. 2019;63(7): e02503-18.
  6. Jannati B, Pourdad A, Izadjoo A, Zarrinfar H, Najafzadeh MJ, Fata A. The Prevalence of Non-albicans Candida and Candida Mixed-species in Vulvovaginal Candidiasis in Northeast Iran. Clin Exp Obstet Gynecol. 2024;51(3):77.
  7. Zarrinfar H, Kord Z, Fata A. High incidence of azole resistance among Candida albicans and C. glabrata isolates in Northeastern Iran. Curr Med Mycol. 2021;7(3):18-21.
  8. Waikhom SD, Afeke I, Kwawu GS, Mbroh HK, Osei GY, Louis B, et al. Prevalence of vulvovaginal candidiasis among pregnant women in the Ho municipality, Ghana: species identification and antifungal susceptibility of Candida BMC Pregnancy Childbirth. 2020;20(1):266.
  9. Al-Baqsami ZF, Ahmad S, Khan Z. Antifungal drug susceptibility, molecular basis of resistance to echinocandins and molecular epidemiology of fluconazole resistance among clinical Candida glabrata isolates in Kuwait. Sci Rep.2020;10(1):6238.
  10. Gygax SE, Vermitsky JP, Chadwick SG, Self MJ, Zimmerman JA, Mordechai E, et al. Antifungal resistance of Candida glabrata vaginal isolates and development of a quantitative reverse transcription-PCR-based azole susceptibility assay. Antimicrob Agents Chemother. 2008;52(9):3424-3426.
  11. Shi Y, Zhu Y, Fan S, Vitagliano A, Liu X, Liao Y, et al. Clinical Characteristics and Antifungal Susceptibility of Candida nivariensis from Vulvovaginal Candidiasis. Gynecol Obstet Invest. 2020;85(1):88-93.
  12. Zhang JY, Liu JH, Liu FD, Xia YH, Wang J, Liu X, et al. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression. Mycoses. 2014;57(10):584-91.
  13. Beardsley J, Kim HY, Dao A, Kidd S, Alastruey-Izquierdo A, Sorrell TC, et al. Candida glabrata (Nakaseomyces glabrata): A systematic review of clinical and microbiological data from 2011 to 2021 to inform the World Health Organization Fungal Priority Pathogens List. Med Mycol. 2024;62(6):myae041.
  14. Hernando-Ortiz A, Mateo E, Ortega-Riveros M, De-la-Pinta I, Quindós G, Eraso E. Caenorhabditis elegans as a model system to assess Candida glabrata, Candida nivariensis, and Candida bracarensis virulence and antifungal efficacy. Antimicrob Agents Chemother. 2020;64(10): e00824-20.
  15. Fujita S-i, Senda Y, Okusi T, Ota Y, Takada H, Yamada K, et al. Catheter-related fungemia due to fluconazole-resistant Candida nivariensis. J Clin Microbiol. 2007;45(10):3459-61.
  16. Arastehfar A, Daneshnia F, Salehi M-R, Zarrinfar H, Khodavaisy S, Haas P-J, et al. Molecular characterization and antifungal susceptibility testing of Candida nivariensis from blood samples–an Iranian multicentre study and a review of the literature. J Med Microbiol. 2019;68(5):770-777.
  17. Liu XH, Meng YF, Nie XJ, Li XY, Tan LY, Chen LM. Candida Exerts Fluconazole-Resistant Effect via Regulating the Expression of CDR and ERG11 in Patients with Vaginitis. Lat Am J Pharm. 2021;40(8):1923-30.
  18. Whaley SG, Zhang Q, Caudle KE, Rogers PD. Relative Contribution of the ABC Transporters Cdr1, Pdh1, and Snq2 to Azole Resistance in Candida glabrata. Antimicrob Agents Chemother. 2018;62(10): e01070-18.
  19. Rocha DAS, Sa LFR, Pinto ACC, Junqueira ML, Silva EMD, Borges RM, et al. Characterisation of an ABC transporter of a resistant Candida glabrata clinical isolate. Mem Inst Oswaldo Cruz. 2018;113(4):e170484.
  20. El Said M, Badawi H, Gamal D, Salem D, Dahroug H, El-Far A. Detection of ERG11 gene in fluconazole resistant urinary Candida Egypt J Immunol. 2022;29(4):134-147.
  21. Zare-Bidaki M, Maleki A, Ghanbarzadeh N, Nikoomanesh F. Expression pattern of drug-resistance genes ERG11 and TAC1 in Candida albicans Clinical isolates. Mol Biol Rep. 2022;49(12):11625-33.
  22. Vu BG, Moye-Rowley WS. Azole-Resistant Alleles of ERG11 in Candida glabrata Trigger Activation of the Pdr1 and Upc2A Transcription Factors. Antimicrob Agents Chemother. 2022;66(3):e02098-21.
  23. Pam VK, Akpan JU, Oduyebo OO, Nwaokorie FO, Fowora MA, Oladele RO, et al. Fluconazole susceptibility and ERG11 gene expression in vaginal Candida species isolated from Lagos Nigeria. Int J Mol Epidemiol Genet. 2012;3(1):84-90.
  24. Frias-De-Leon MG, Hernandez-Castro R, Conde-Cuevas E, Garcia-Coronel IH, Vazquez-Aceituno VA, Soriano-Ursua MA, et al. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics. 2021;13(10):1529.
  25. Yoo JI, Choi CW, Kim HS, Yoo JS, Jeong YH, Lee YS. Proteomic Analysis of Cellular and Membrane Proteins in Fluconazole-Resistant Candida glabrata. Osong Public Health Res Perspect. 2012;3(2):74-78.
  26. Sanguinetti M, Posteraro B, Fiori B, Ranno S, Torelli R, Fadda G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob Agents Chemother. 2005;49(2):668-79.
  27. Salgado RC, Fonseca DLM, Marques AHC, da Silva Napoleao SM, Franca TT, Akashi KT, et al. The network interplay of interferon and Toll-like receptor signaling pathways in the anti-Candida immune response. Sci Rep. 2021;11(1):20281.
  28. Healey KR, Jimenez Ortigosa C, Shor E, Perlin DS. Genetic Drivers of Multidrug Resistance in Candida glabrata. Front Microbiol. 2016;7:1995.
  29. Conway TP, Simonicova L, Moye-Rowley WS. Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. Genetics. 2024;228(1): iyae115.
  30. Rodrigues CF, Rodrigues ME, Silva S, Henriques M. Candida glabrata Biofilms: How Far Have We Come? J Fungi (Basel). 2017;3(1):11.
  31. Sanglard D, Ischer F, Calabrese D, Majcherczyk PA, Bille J. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother. 1999;43(11):2753-
  32. Paul S, Bair TB, Moye-Rowley WS. Identification of genomic binding sites for Candida glabrata Pdr1 transcription factor in wild-type and rho0 cells. Antimicrob Agents Chemother. 2014;58(11):6904-
  33. Bernardo RT, Cunha DV, Wang C, Pereira L, Silva S, Salazar SB, et al. The CgHaa1-Regulon Mediates Response and Tolerance to Acetic Acid Stress in the Human Pathogen Candida glabrata. G3 (Bethesda). 2017;7(1):1-18.
  34. Salazar SB, Pinheiro MJF, Sotti-Novais D, Soares AR, Lopes MM, Ferreira T, et al. Disclosing azole resistance mechanisms in resistant Candida glabrata strains encoding wild-type or gain-of-function CgPDR1 alleles through comparative genomics and transcriptomics. G3 (Bethesda). 2022;12(7):jkac110.
  35. Li QQ, Tsai HF, Mandal A, Walker BA, Noble JA, Fukuda Y, et al. Sterol uptake and sterol biosynthesis act coordinately to mediate antifungal resistance in Candida glabrata under azole and hypoxic stress. Mol Med Rep. 2018;17(5):6585- 6597.